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Abstract

We present novel machine learning and data mining methods that

make real-world learning systems more efficient. We focus on the do-

main of clinical informatics, an archetypical example of a field over-

whelmed with information. Due to properties inherent to clinical

informatics tasks – and indeed, to many tasks that require special-

ized domain knowledge – ‘off-the-shelf’ machine learning technologies

generally perform poorly in this domain.

If machine learning is to be successful in clinical science, novel meth-

ods must be developed to: mitigate the effects of class imbalance dur-

ing model induction; exploit the wealth of domain knowledge highly

skilled domain experts bring to the task; and to induce better mod-

els with less effort (fewer labels). We present new machine learning

methods that address each of these issues, and demonstrate their

efficacy in the task of abstract screening. In particular, we develop

new theoretical perspectives on class imbalance, novel methods for ex-

ploiting dual supervision (i.e., labels on both instances and features),

and new active learning techniques that address issues inherent to

real-world applications (e.g., exploiting multiple experts in tandem).

Each of these contributions aims to squeeze better classification per-

formance out of fewer labels, thereby making better use of domain

experts’ time and expertise.

The immediate aim in this work is to reduce the workload involved

in conducting systematic reviews, and to this end we demonstrate

that the developed methods can reduce reviewer workload by more

than half, without sacrificing the comprehensiveness of reviews (i.e.,

without missing any relevant published evidence). But this is only

an exemplary task; the approaches presented here have wider appli-

cation to many real-world learning problems, i.e., those that require

specialized expertise, exhibit class imbalance (and asymmetric costs)

and for which limited human resources are available. We show that

the methods we have developed bring substantial improvements over



previously existing machine learning approaches in terms of inducing

better models with less effort.
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ter classifier than w∗. Indeed if the test sample is also imbalanced,
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1

Motivation and Preliminaries

In this section we first introduce our motivating task of citation screening for

systematic reviews, which unbiasedly appraise all of the evidence pertaining

to a specific clinical question. These reviews play a critical role in informing

medical practice, but are extremely laborious to conduct; we look to reduce

this workload via data mining. By presenting the motivating problem at some

length we aim to provide a context for the data mining contributions made in this

thesis. However, while the obstacles and opportunities that have arisen in the

citation screening application have motivated our methodological developments

(30), we emphasize that the problems we discuss, and the solutions we propose,

are widely applicable. Indeed, the characteristics that make citation screening

difficult from a data mining perspective – class imbalance, asymmetric costs,

pricey experts with limited resources, multiple annotators of varying cost and

expertise – are inherent to many real-world problems, particularly in the clinical

domain.

After introducing systematic reviews in Section 1.1, we review machine learn-

ing fundamentals in Section 1.2 for the uninitiated. In Section 1.3 we outline

open machine learning problems inherent to the citation screening task. These

issue are common to real-world learning scenarios, and addressing them is thus

imperative if machine learning methods are to be of practical use. The remainder

of this thesis will be concerned with doing just that.
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1.1 Systematic Reviews

Figure 1.1: The citation screening process.

1.1 Systematic Reviews

Systematic reviews are increasingly used to inform all levels of healthcare, from

bedside individualized decisions to policy-making. A systematic review addresses

a precisely formulated clinical question by following a protocol of well-defined

steps (17, 46). To minimize selection bias, systematic reviews appraise and

analyze all research reports that fulfill a set of pre-defined eligibility criteria. To

identify all eligible reports, reviewers conduct broad searches of the literature

and then manually screen the retrieved citations for eligibility, i.e., read each

abstract to decide if it meets the inclusion criteria.

All relevant (potentially eligible) citations are then reviewed in full-text to

select those to be ultimately included in the systematic review. We refer to this

latter step as level-2 screening, and the initial abstract screening step as level-1

screening. We will return to this distinction when evaluating methods for semi-

automating screening. The citations ultimately deemed eligible for inclusion –

those that pass level-2 screening – are then summarized in the review. Ideally,

this is done quantitatively via meta-analysis (52), i.e., statistical pooling of the

results reported in the individual studies. Performed correctly, meta-analysis

can provide better a estimate of treatment efficacies than any individual clinical

study, due to its increased statistical power (97). Meta-analyses are consid-

ered the strongest form of evidence, and are therefore a cornerstone of modern

evidence-based medicine. Our focus is on mitigating the workload required to

winnow the overwhelming amount of published clinical literature down to the

tens of studies to be distilled into usable medical knowledge.
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1. MOTIVATION AND PRELIMINARIES

Figure 1.2: The abstracts manually screened by reviewers for a systematic review
conducted at the Tufts Evidence-based Practice Center.

Screening citations for systematic reviews is a tedious, time-consuming and

critical step in the evidence synthesis process. Failure to identify eligible research

reports threatens the validity of a review. Typically, reviewers screen around

5,000 citations for eligibility, approximately 100 of which are deemed relevant and

subsequently reviewed in full text. Of these, at most a few dozen are ultimately

included in the systematic review. This is depicted in Figure 1.1, which plots

on a log-scale the number of citations at each step in the described winnowing

process (the right-most stack represents those citations screened in at the level-1

level). Much larger projects are not uncommon. For example, in a project that

involved three evidence reports conducted for the United States Social Security

Administration on the association of low birth weight, failure to thrive, and short

stature in children with disability, the Tufts Evidence-based Practice Center

screened over 33,000 abstracts (44, 125, 171). Figure 1.2 illustrates the amount

of labor involved in the screening process: all of the abstracts that comprise the

stacks in this photo were read by an expert.

An experienced reviewer can screen an average of two abstracts per minute.

At this rate, a project comprising 5,000 abstracts requires 5 person days (40

hours) of uninterrupted work time. Moreover, abstracts for difficult topics may

take several minutes each to evaluate, increasing by several fold the screening

time. In total, a systematic review with meta-analysis can take between 1,000

and 2,000 person hours. Part of this time appears to be related to topic refine-
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1.1 Systematic Reviews

ment and setup; the rest depends on the number of included papers (2). The

experts conducting such reviews are typically medical doctors, whose time is

obviously expensive. Nationally, then, the cost of producing systematic reviews

is tremendous.

These costs are only going to increase. Systematic reviews have gained wide

acceptance as a practical way to provide reliable and comprehensive syntheses of

the expanding medical evidence base. MEDLINE indexes more than 20,000 new

randomized trials from 2010 alone, and the increasing trajectory of publication

rates shows no signs of slowing. It is increasingly difficult to keep up with new

information for both performing new reviews and updating existing reviews (18).

Exacerbating the challenge of information overload, the standards for systematic

reviews and meta-analyses are more demanding now than they were only ten

years ago. The time to complete a systematic review and meta-analysis has

not decreased over the last three decades. Indeed, the US Agency for Healthcare

Research and Quality’s comparative effectiveness reviews take at least 13 months

to complete, an amount of time that has grown consistently during the last 15

years.

Yet researchers must continue producing such reviews, as they are critical to

informing medical best-practice. Machine learning methods are plainly needed

to reduce the workload involved in conducting systematic reviews. But as we will

discuss, off-the-shelf techniques are not up to the task, due in part to unrealistic

assumptions often made in machine learning. The citation screening task can

thus be viewed as an exemplar problem that brings to the fore open machine

learning questions. Solutions to these problems beget an immediate reward –

namely reducing workload in systematic reviews – but are also of import to

real-world data mining, in general.

In this thesis we consider the citation screening task from a machine learning

(ML) vantage, re-casting it as a classification task. Specifically, we look to

induce a model capable of discriminating ‘relevant’ from ‘irrelevant’ citations for

a given review. The idea is to acquire minimal supervision from the participating

experts (i.e., have them label a small subset of the citations retrieved via their

broad literature search), induce the classification model, and then apply it to
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1. MOTIVATION AND PRELIMINARIES
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Figure 1.3: The supervised learning paradigm. The (human) expert labels a sam-
ple of the data to be classified, and this labeled data is used to induce a classification
model.

the remaining citations. The reviewers will trust the model’s exclusion decisions,

and thus will not need to screen those citations the classifier deems ‘irrelevant’,

thereby mitigating workload.

For completeness, we next introduce machine learning – we advise readers

familiar with basic ML concepts (in particular: supervised learning, text classi-

fication, and Support Vector Machines) to skip this section. In Section 1.3, we

identify open problems in machine learning that render ‘off-the-shelf’ methods

insufficient for the task of citation screening, motivating the remainder of this

thesis.

1.2 Supervised Machine Learning

The problem of classification falls under the umbrella of supervised machine

learning methods. Generally speaking, these methods train a learner (model)

on a set of labeled data with the aim of subsequently predicting the (unknown)

labels of novel instances. This training step involves estimating, or ‘learning’, the

parameters of the selected model. The supervised learning paradigm is depicted

schematically in Figure 1.3.

As an example, consider a common benchmark task in machine learning:

predicting the price of houses given their characteristics (75). It is reasonable

to assume that housing prices are a function of their attributes; e.g., number
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Figure 1.4: The (binary) Bag-of-Words (BoW) representation.

of bedrooms, square footage, and so on. In the parlance of machine learning,

such attributes are referred to as features. Each instance (house, in this case) is

then represented by a feature-vector that encodes these attributes. In the case

of a simple linear model, we then might assume that features relate to cost as

specified by Equation 1.1.

cost(house) = β0 + β1(number of bedrooms) + β2(square footage) + ... (1.1)

In this case, ‘learning’ involves estimating the coefficients (i.e., the βs) from a

training set comprising some number of houses, including their attributes and

their costs. To estimate our parameters, we would simply regress the former

against the latter. This process is considered supervised because the model is

induced over labeled data. Here, the label for a given house is its cost. This is an

example of a regression task, because the target variable in this case – cost – is

continuous. This is in contrast to classification tasks, wherein we aim to predict

discrete category (class) to which an instance belongs.

1.2.1 Text Classification

Consider a task more closely related to that of citation screening: spam clas-

sification. In this case, instances are e-mails, and the aim is predict whether
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1. MOTIVATION AND PRELIMINARIES

a given e-mail is spam (or not). Before training a model, the e-mails must be

transformed into a suitable representation, i.e., mapped into a feature-space.

The most commonly used representation for text classification tasks is called

Bag-of-Words (BoW) (98). This is an unstructured representation in which ev-

ery word that appears in a corpus is assigned a unique index. Subsequently, each

document is represented by a vector comprising 1’s at the indices corresponding

to words that appear in it and 0’s elsewhere.

This is referred to as a binary BoW representation, and we have depicted

the representation in Figure 1.4. The entries in the vector corresponding to the

observed (bolded) words are set to 1; the unobserved words (e.g., ‘dinner’) were

present in other e-mails, but not this one. Finally, uninformative words, such as

‘I’ and ‘a’, are simply ignored. These are sometimes referred to as stop words

(85).

Binary BoW is the simplest of the BoW representations. More sophisti-

cated variants exist, e.g., term-frequency/inverse-document-frequency (TF/IDF)

(110), which weights terms as a function of their frequency in the corresponding

document relative to its overall frequency throughout the corpus. In our experi-

ence, however, the specific BoW variant has little effect on performance; in this

work, all BoW representations are binary.

Once documents are mapped into a feature-space representation, one can ap-

ply machine learning algorithms to induce classifiers that will predict to which

category (e.g., spam/not-spam) examples belong, given their feature-vector.

Many learning algorithms exist, but in this work we will rely primarily on Sup-

port Vector Machines (SVMs) (148), which we review in the following section.

SVMs are well-suited to the citation screening task because they are particu-

larly adept at text classification (84). That said, many of the machine learning

contributions in this thesis are independent of the underlying learning algorithm.

1.2.2 Support Vector Machines (SVMs)

The Support Vector Machine (SVM) is a state-of-the-science classifier (31). Intu-

itively, it works as follows. Given a training dataset comprising instances (feature

vectors) and their labels (presumably provided by a domain expert), we look to
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Figure 1.5: The max-margin approach favored by Support Vector Machines.

find a hyper-plane1 that separates the instances into their respective classes as

accurately as possible. New instances are classified according to the side of this

hyper-plane on which they fall. Non-linear decision surfaces, i.e., cases in which

the instances comprising the respective classes cannot be separated by a simple

line, can be accommodated by implicitly mapping feature vectors to a higher

dimensional space in which linear separation is feasible. This is referred to as

the kernel trick.2

For any given dataset, there is usually an infinite number of hyper-planes that

separate the data equally well. SVMs take a max-margin approach to picking

one of these: we select the hyper-plane that maximizes the distance between

the nearest instances from the respective classes (the support vectors). This

intuition is perhaps best grasped via an illustration: consider Figure 1.5. In

this simple two-dimensional problem, there are two classes, the o’s and the x’s.

The max-margin approach is intuitively agreeable – you want members of both

classes to be as far from the decision boundary as possible. It is also theoretically

motivated by statistical learning theory (159). Of course, data will not always

be separable. In such cases, there will be a trade-off between maximizing the

margin between classes and correctly classifying the training data.

1A hyper-plane is just a generalization of a line to many dimensions.
2A thorough treatment of kernel methods is beyond the scope of this work; cf. (140).
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yf(x)

Figure 1.6: Hinge-loss. The y-axis is loss; the x-axis is yf(x), where f(x) generally
encodes some confidence measure in the prediction. When yf(x) > 0, a correct
prediction has been made. We have demarcated a hypothetical threshold for this
by the dotted line. Note that immediately to the right of this line loss is still
incurred, despite a correction prediction being made. This effectively penalizes
low-confidence predictions, i.e., encourages a large-margin in classification.

More precisely, the preceding intuition can be operationalized by optimizing

the following objective function:

argmin
w,b,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi (1.2)

s.t. yi (w · xi + b) ≥ 1− ξi ∀i = 1 . . .m (1.3)

ξi ≥ 0 ∀i = 1 . . .m (1.4)

where we denote the vector characterizing the hyperplane by w, instances by xi,

and an intercept (or bias term) by b. The curious 1
2 is just a mathematical con-

venience. Further, we define ξ ∈ [0,∞)m as a slack variable vector to minimize

instance-wise hinge-loss, which is defined by:

l(y, f(x)) = max(0, 1− y · f(x)) (1.5)

Hinge-loss is depicted in Figure 1.6. This loss function is well-suited to SVMs

because predictions that violate the margin incur loss, even if the classification

is correct. We note, however, that hinge-loss is just one of many available loss-

functions, all of which penalize empirical error in different ways.
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Finally, C is a tradeoff parameter between misclassification error and regu-

larization.1 Equations 1.2 through 1.4 thus codify the max-margin and error-

minimization principles. This constitutes a quadratic program and can be solved

using standard optimization procedures (174).

The preceding machinery is sufficient to perform text classification: one first

maps documents into BoW representation and then induces an SVM (or some

other inductive classification model) on the training set. Having reviewed in

brief the basic machine learning technologies on which we will rely, we now turn

to the open research problems in ML addressed in this thesis.

1.3 Advancing Machine Learning Through its Appli-

cation: Thesis Contributions

At first glance, it may seem tempting to conclude that existing machine learn-

ing technologies are sufficient to semi-automate citation screening, and that we

should therefore simply use one of the many available ML software packages

(e.g., Weka (73)) and be done. A few characteristics, however, make the cita-

tion screening task challenging (and thus interesting) from a machine learning

vantage. We also re-iterate that these characteristics are common to real-world

learning tasks, in general; thus while our contributions are motivated by the

citation-screening task, they also have more general import.

A pervasive issue in our task is extreme class imbalance: there are far fewer

relevant than irrelevant citations in any given systematic review. Moreover, the

misclassification costs are asymmetric. It is imperative that researchers under-

taking a review identify all potentially eligible studies, i.e., false negatives are

costlier than false positives. Learning under imbalance with asymmetric mis-

classification costs is a common problem in deployed machine learning, and has

thus received quite a lot of attention in the literature of which there are at least

three surveys (71, 77, 83). Somewhat surprisingly, however, there is little the-

oretical understanding of the issue. Practitioners are thus provided with little

guidance when faced with an imbalanced dataset. We present a theoretical per-

1Regularization is a strategy to avoid over-fitting, generally by attempting to keep the
model simple, e.g., keeping most weights small.

33



1. MOTIVATION AND PRELIMINARIES

spective on class imbalance in Chapter 2. This probabilistic framework motivates

our approach of bootstrap-aggregating (bagging) classifiers induced on balanced

samples of the training data (166). Using similar reasoning, we show that class

probability estimates can also be improved via bagged/undersampled estimates

(161).

There is also a fundamental issue of making better use of domain expert’s

time and expertise. In particular, the underlying target concept is different for

every systematic review, and thus a new classification model must be induced for

each new review topic. This imposes a substantial burden on domain experts,

as they must label (screen) a sufficiently large training corpus for each review.

Furthermore, the minimum level of biomedical expertise required for this label-

ing task precludes the outsourcing of annotation work to low-cost crowd-sourced

services such as Mechanical Turk (http://www.mturk.com). As a means of re-

ducing the burden on domain experts (and hence cost), we exploit the dual

supervision and active learning frameworks. In the former, one exploits supervi-

sion on features in addition to instance-labels to expedite training. In the latter,

the learning model interactively selects for labeling the (unlabeled) instances

that are most likely to be informative, i.e., helpful in inducing a classification

model.

First consider dual supervision. It is natural to ask whether domain experts

can impart knowledge directly to the model, rather than indirectly via instance

labels alone. The dual supervision framework allows just this. In dually su-

pervised learning, experts annotate specific features (here, terms) that correlate

with the respective classes of interest (relevance/irrelevance; spam/not-spam).

This is in contrast to traditional supervised learning algorithms, which exploit

only instance labels. These associate with each training example a single class

label. However, domain experts may be able to provide more direct forms of

supervision. For example, if one is inducing a model to discriminate positive

from negative movie reviews, the presence of the word ‘great’ is likely to in-

dicate membership in the former class, while the word ‘terrible’ suggests the

latter. In Chapter 3 we propose a novel dually supervised approach that extends

the Support Vector Machine (SVM) (45) model, which we call the Constrained
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Weight-space SVM (CW-SVM) (151). In addition to binary labels on features,

the CW-SVM can learn from ranked feature information. We show that this

method outperforms baseline classification methods and previously proposed ap-

proaches to dual supervision.

Dual supervision attempts to make better use of experts by accommodating

more direct supervision; active learning looks to achieve the same goal via differ-

ent means. Specifically, in active learning the aim is to build a better model with

fewer labels by picking the training instances cleverly, rather than at random.

But as we shall demonstrate, off-the-shelf active learning methods (e.g., uncer-

tainty sampling (158)) do not work well for our task. In Chapter 4 we develop

novel active learning methods to expedite the training process. These methods

are specifically designed for class-imbalanced scenarios because existing active

learning methods perform poorly when applied to imbalanced datasets (165).

We also address other issues in real-world active learning. For example, in the

citation screening scenario a small number of experts (reviewers) typically par-

ticipate in the screening task, some of whom are veteran reviewers, and others

who are relatively new to systematic reviews. This is at odds with the usual

assumption in (active) learning that there is a single, infallible oracle willing to

provide labels at a fixed cost. To address these real-world problems we have

developed active learning methods that perform instance allocation in multiple,

imperfect labeler scenarios (167).

Another tacit assumption usually made in active learning is that labels for

instances are of equal cost. In reality, of course, the cost of labeling instances will

vary according to their difficulty, i.e., how long it takes an expert to categorize

them. Exploiting this intuition, in Chapter 4 we develop a model to predict

instance annotation time and incorporate this into the active learning process to

select instances with high return on investment, i.e., that are likely to provide a

lot of information at little cost (163).

In Chapter 5 we then combine the above two strategies, and present an al-

gorithm for dually supervised active learning (165). We show that this strategy

outperforms existing active learning methods, particularly in the case of im-

balanced data. In Chapter 6 we present results from realistic experiments on
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citation screening datasets using our methods. We show that these methods can

indeed substantially reduce workload, without sacrificing the thoroughness of

reviews. We also present abstrackr, our open-source web-based tool that imple-

ments these technologies, thereby making the machine learning tools available to

systematic reviewers. We conclude in Chapter 7 by discussing our contributions

and future research directions.

We have introduced the task of citation screening for systematic reviews,

which will motivate the data mining problems tackled in the remainder of this

thesis. The overarching aim is to squeeze better models from fewer labels. Be-

yond the immediate problem of citation screening, these issues are inherent to

many real-world tasks in which machine learning has the potential to reduce hu-

man workload, and solving them thus has broad implications. In the remainder

of this thesis, we address these problems in turn. We start by addressing the

problem of learning under class imbalance in the following chapter.
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2

New Perspectives on Class

Imbalance

Class imbalance refers to the scenario in which the number of instances from

each class is (perhaps extremely) unequal. For example, in the case of citation

screening, there are far fewer relevant than irrelevant citations.1 Imbalance is

common in real-world learning tasks, e.g., detecting oil spills (93), text classifi-

cation, and medical applications (41). The problem of imbalance is exacerbated

by the fact that in imbalanced scenarios, the minority class is usually of pri-

mary interest. That is, misclassification costs are typically asymmetric so as to

emphasize correct classification of minority instances. To consider two concrete

examples: the majority of email is spam (154), but classifying legitimate email

as spam is highly undesirable; most financial transactions are legitimate, but it

is expensive to miss any instances of fraud (126).

Unfortunately, discriminative models induced over imbalanced datasets tend

to fare poorly in terms of their predictive accuracy with respect to the minority

class; such models generally suffer from low sensitivity (1).2 Indeed, imbalance is

problematic for machine learning methods in general, as it tends to bias inductive

learning algorithms in favor of the majority class, resulting in false negatives. In

our application this means wrongly designating relevant citations as irrelevant,

a costly mistake because missing even one relevant citation may invalidate an

1It also naturally occurs in multi-class scenarios when one is interested in classifying in-
stances as belonging to a specific class j versus not belonging to j.

2Sensitivity is also sometimes referred to as recall.

37



2. NEW PERSPECTIVES ON CLASS IMBALANCE

entire review (see Section 1.1). Mistakes in the other direction are less expensive:

wrongly classifying an irrelevant citation as relevant incurs only the added cost

of the time taken by an expert to subsequently exclude it from the review.

In this chapter we consider the problem of imbalance in the context of two

machine learning tasks: classification (Section 2.2) and probability estimation

(Section 2.3). The former is the standard classification task described in Section

1.2. The latter involves estimating the probability that a given instance belongs

to a specific class, as opposed to simply predicting that it does or does not.

Probability estimates are useful for providing a measure of confidence regarding

a class prediction. For example, in our case we may wish to classify a citation

as irrelevant only if we have a high confidence that it indeed is.

We will show that imbalance biases both classifiers and probability estima-

tors, and provide theory as to why this is the case. Motivated by this exposition,

we will propose solutions for both tasks that mitigate the effects of imbalance and

produce less-biased classifiers and probability estimators for imbalanced data.

Before presenting our work on the problem of imbalance, we next place our work

in context by reviewing related work. We do not, however, attempt an exhaus-

tive survey of the literature regarding imbalance; readers interested in a more

detailed summary of existing methods for handling imbalance (especially for clas-

sification) should consult one of the existing surveys of the matter (71, 77, 83).

We note that a portion of this chapter appeared in the 2011 Proceedings of the

International Conference on Data Mining (ICDM 2011) (166).

2.1 Related Work

The problem of imbalance in classification tasks has received considerable re-

search attention (1, 36, 60, 77, 82, 83, 118, 170, 175). Techniques for miti-

gating the effects of imbalance fall into two categories: re-sampling methods

(59, 93, 106, 156) and methods that alter the empirical error function being op-

timized over the training set to emphasize recall (105, 155, 175). Sampling-based

methods re-sample the training set to make the class distribution more equal,

either by undersampling majority instances or oversampling minority instances.
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These two strategies are opposite means to the same end: making the training

distribution roughly balanced.

Figure 2.1: SMOTE (Synthetic Minority
Oversampling TEchnique) (35), graphically.
The darker instances represent observed mi-
nority examples. The lighter blue instances
represent synthetically created minority ex-
amples. These are generated by interpolat-
ing the observed rare instances.

An interesting variant of over-

sampling is SMOTE (35), in which

pseudo-minority instances are cre-

ated by interpolating observed mi-

nority examples in feature-space.

This is depicted in Figure 2.1. A

variant of this strategy is border-

line-SMOTE, in which only minor-

ity instances near the discriminating

plane are used to generate pseudo-

minority points (74). The hope is

that placing additional minority points near the border will have a greater effect

on the induced classifier.

Cost-based strategies increase the cost of false negatives relative to that of

false positives during training, thereby favoring parameters that correctly classify

minority instances. For example, cost-weighted SVMs decompose the empirical

cost C (see Equation 1.2) into CFN , CFP , corresponding to costs for false nega-

tives and for false positives, respectively – the former is usually set higher than

the latter to reflect an emphasis on sensitivity (155). More generally, any learn-

ing algorithm that looks to minimize empirical error on a training set can take

this approach by assigning different costs to mistakes made on instances from

the respective classes in the objective function.

Empirically, it seems sampling-based strategies are more effective in mitigat-

ing the effects of imbalance – see (80) for an exhaustive empirical evaluation.1

Undersampling, especially, often outperforms other methods. In the following

section we will elucidate why this is the case, as the empirical success of under-

sampling was previously an open question. Subsequently aggregating an ensem-

1Obviously, what constitutes good performance depends on the metrics one is using.
Loosely, we will assume that one is interested in inducing classifiers that perform at least
as well on minority instances as they do majority instances, i.e., achieve sensitivity at least as
high as specificity (see Equations 2.1 through 2.4).
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ble of these classifiers induced over undersampled training sets is, in our view, a

natural next step. Yet this bagging approach is often overlooked by researchers.

Indeed, the most comprehensive empirical comparison of strategies to mitigate

the effects of imbalance (80) did not include bagged classifiers induced on boot-

strap (undersampled) training sets, despite undersampling performing the best

of all methods, overall.

Elsewhere, researchers have investigated boosting-style (65) algorithms to

mitigate the effects of imbalance. Recall that boosting is an iterative procedure

in which the training set is re-sampled at each step to emphasize correct classi-

fication of those instances on which mistakes were made in the previous round.

Once complete, boosting produces an ensemble of classifiers induced over the

varying per-round distributions; final predictions are taken as an aggregate over

these, where each classifier contributes to the overall prediction with weight pro-

portional to its empirical performance. Methods that address imbalance via

boosting typically work by re-sampling or otherwise modifying the training set

at each round during boosting.

Seiffert et al. (141) report that standard boosting is, surprisingly, competitive

with other techniques for handling imbalance. This is perhaps because it forces

correct predictions on the minority instances in the training set. Chawla et al.

(37), meanwhile, proposed SMOTEing the training dataset at each step in the

boosting process. Liu et al. (106) proposed a similar strategy, in which they

extend Schapire’s classic AdaBoost algorithm (138) to induce a classifier on a

balanced sampling of the training data at each round, producing a committee

of classifiers each induced over independently drawn balanced sub-samples of

the training data. This approach of bootstrap-aggregating, or bagging (26),

classifiers trained on re-sampled subsets has been proposed independently in the

literature several times (79, 87, 156), and we will return to it in Section 2.2. Guo

and Viktor (70) propose mixing synthetic data and boosting. Specifically, at each

round they identify hard instances from both the majority and minority classes.

These are fed into SMOTE to generate pseudo-instances that are subsequently

used to form a balanced dataset. The classifier trained on this training set thus

equally emphasizes correctly classifying difficult instances from both classes.
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In contrast to the case of classification, there has been little work investigating

the reliability of class probability estimates in the context of imbalanced data, the

task we address in Section 2.3. This is surprising because it is in such imbalanced

cases that probability estimates could potentially be of most use: probability

estimates can inform decision-theoretic models that look to make minimum-cost

classifications in scenarios with asymmetric costs. More generally, probability

estimates offer more granular information than class predictions alone. Indeed,

due to their utility, there has been a substantial amount of work investigating

attaining probability estimates from supervised learning in general ; notably due

to Niculescu and Caruana (120, 121) and Zadrozny and Elkan (179). We review

the technical details of existing calibration methods in Section 2.3. The only

work of which we are aware that investigates probability estimates specifically

in the context of imbalance is due to Cieslak and Chawla, who investigated the

specific case of Probability Estimation Trees (PETs) for imbalanced data (39).

Their main focus was to elucidate the interaction between imbalance methods

for PETs, and corresponding evaluation measures under circumstances where

training and testing samples differ. By contrast, our work concerns calibrated

probability estimates in general, as opposed to estimates produced directly by

PETs. Moreover, we do not exclusively concern ourselves with scenarios in which

the train and test sets differ.

Having reviewed in brief much of the imbalanced learning literature above,

we next turn our attention to learning classifiers over imbalanced data. In par-

ticular we introduce a theoretical framework with which we analyze the problem,

and using this we advocate the strategy of bagging classifiers induced over bal-

anced bootstrap samples. In Section 2.3 we address the equally important, but

under-studied, task of producing good class membership probability estimates for

imbalanced data. After demonstrating that existing supervised learning meth-

ods for probability estimates perform poorly in imbalanced cases, we propose a

method similar to the aforementioned bagging technique for classification.
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2.2 Classification for Imbalanced Data, Redux

We first consider the problem of class imbalance from the perspective of classi-

fication. We approach the problem from a probabilistic perspective, and from

this vantage identify dataset characteristics (such as dimensionality, sparsity,

etc.) that exacerbate the problem. Motivated by this theory, we advocate the

approach of bagging an ensemble of classifiers induced over balanced bootstrap

training samples, arguing that this strategy will often succeed where others fail.

Thus in addition to providing theoretical insight into the problem of class im-

balance, corroborated by our experiments on both simulated and real datasets,

we provide practical guidance for the data mining practitioner working with

imbalanced data.

Classification under imbalance is an important problem in data mining due

to the prevalence of imbalance in real-world tasks and the relatively poor per-

formance achieved by existing learning algorithms on such datasets. Indeed, the

problem of inducing classifiers over imbalanced datasets with asymmetric costs

has been designated one of ‘10 challenging problems in data mining research’

(177). The prevalence of the problem has motivated a significant amount of

methodological research into learning under imbalance, much of which is re-

viewed above. There are several surveys on the topic of imbalance (71, 77, 83).

Yet while many methods have been proposed to handle imbalance, there has

been relatively little effort to elucidate the underlying mechanisms that cause

discriminative models to fail when faced with imbalanced datasets. Because the

conditions that lead to poor classifier performance under imbalance are not well

understood, it is not clear which (if any) of the myriad existing algorithms for

mitigating the effects of imbalance ought to be employed for a given task. Con-

sequently, when faced with imbalance, the data mining practitioner is left with

little guidance regarding how to proceed. Here we theoretically motivate and

empirically justify the use of the simple undersampling strategy for imbalanced

datasets under particular conditions (e.g., high-dimensionality). This work thus

provides an explanation for the otherwise surprising observation that undersam-

42



2.2 Classification for Imbalanced Data, Redux

pling tends often to outperform what are ostensibly more advanced techniques

(e.g., SMOTE) (80).

While effective, undersampling is problematic because it is a high-variance

strategy: classifiers induced over different bootstrap samples will sometimes

have significantly different predictive performance. To ameliorate this prob-

lem, one can use the bagging (26) variance-reduction ensemble method. Bagging

reduces classifier variance by creating an ensemble of predictors over indepen-

dently drawn bootstrap training samples. The strategy of bagging classifiers

induced over balanced bootstrap training sets has been independently proposed

several times (e.g,. (79, 87, 106, 156)), but why and when it should outperform

other methods has been largely unexplored. In this work we provide such an

explanation, and we conclude that in cases where data is imbalanced and either

high dimensional, highly skewed or sparse,1 practitioners should bag classifiers

induced over balanced bootstrap samples. Specifically, we contend that while al-

gorithmic approaches to handling class imbalance often improve performance,

sampling approaches such as undersampling will usually perform better. We

show that cost-sensitive approaches that look to improve performance achieved

under imbalance by, for example, modifying the relative costs of false negatives

to false positives in an objective function, will still often induce biased classifiers.

The primary contributions of our work on classification under imbalance are

as follows. We develop a probabilistic theory to quantify the effects of imbalance

on the induction of empirical-loss minimizing models (e.g., SVMs). We show

that under a few weak assumptions, such models will necessarily be biased to-

ward the minority class, explaining the observed degradation in recall over test

datasets. Furthermore, we decompose this bias into sub-components, some of

which reflect properties of the training sample, and others that modify the em-

pirical loss calculation. In light of this decomposition, we analyze several popular

methods for handling imbalance, and discuss under what conditions one can ex-

pect them to work. We theoretically motivate, and experimentally demonstrate

the efficacy of, the simple but robust strategy of bagging classifiers induced over

1By highly skewed we mean severely imbalanced. By sparse we refer to datasets comprising
instances with a high proportion of 0 valued features.
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balanced, bootstrap samples under various learning conditions. By providing a

probabilistically motivated theory of imbalance, the implications of which are

borne out both in our simulation and empirical experiments, we shed new light

on a long-standing problem and provide disciplined guidance to practitioners

facing imbalance.

2.2.1 An Analysis of Imbalance

In supervised classification, we are given an observed training set D over which

a predictive model c is to be induced. Typically, c is constructed to optimize a

specified objective function (equivalently, minimize some loss function) over the

points comprising D. More precisely, let us assume that given D, the aim is to

induce a linear classifier that minimizes the empirical error over D.

Typically, however, one does not look to simply minimize the overall empirical

error (i.e., maximize accuracy) in imbalanced scenarios. Consider, for example,

that the trivial majority classifier that classifies every instance as belonging to

the majority class will achieve 99% accuracy if the prevalence of the minority

class is 1%. Rather, it is generally accepted that considering sensitivity and

specificity separately – or taking a weighted combination of them, e.g. via the

geometric mean of sensitivity and specificity (which is traditionally referred to

as the g-mean) or F -score1 – is more appropriate for imbalanced datasets (36,

83, 91, 128, 155, 170). These metrics are defined in Equations 2.1 through

2.5 where TP , FP , TN , and FN represent the number of true positives, false

positives, true negatives and false negatives, respectively. In all of these metrics

save for precision, prevalence drops out completely. Thus when one looks to

maximize one of these, one is attempting to induce a classifier that performs

well on instances from both classes, irrespective of prevalence. This insight will

guide our analysis here. Note also that even when sensitivity and precision

1The F -score is often defined as a combination of precision and sensitivity, rather than
specificity and sensitivity; we generally prefer using specificity in place of precision because
it is independent of sensitivity, whereas precision is not. When we use specificity in place of
precision, we shall indicate this with the superscript ‘spec’, i.e., using F spec

2 . In any case both
formulations emphasize sensitivity regardless of prevalence.
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(rather than specificity) are used, emphasis is placed on correctly classifying

minority examples independent of the observed prevalence.1

sensitivity (recall) = TP/(TP + FN) (2.1)

specificity = TN/(TN + FP ) (2.2)

precision = TP/(FP + TP ) (2.3)

F spec
2 =

5 · sensitivity · specificity

4 · sensitivity + specificity
(2.4)

G-mean =
√

sensitivity · specificity (2.5)

The key assumption we will make in this work is that the observed positive

and negative instances (D+ and D−) are drawn from two independent, latent

distributions: P and G, respectively. Without loss of generality, we assume

that positive instances constitute the minority class. Under this ‘two-sample’

assumption, it is readily apparent why a discriminative model induced over

the sample D = D+ ∪ D− achieves poor recall: the positive distribution P

is under-represented and hence poorly characterized, while we are likely to have

encountered ‘outlying’ negative examples due the comparatively large number

of observations drawn from G. We are therefore likely to induce a separator

that is skewed toward the minority class (i.e., closer to the minority points than

it should be), resulting in poor predictive performance over hold-out instances

from this class.

This intuition is illustrated by Figure 2.2, a synthetic example in which the

×’s represent the minority class and the �’s the majority: the corresponding la-

tent Gaussians (P and G) from which these samples were drawn are also shown.

Here these distributions are unimodal; in such cases bias will be especially pro-

nounced. We will not generally be making unimodal assumptions, however if P

and G are dense around w∗, bias will be less of a problem because we will be

increasingly likely to have observed points near this plane from both classes. The

dotted line (ŵ) is the hypothesis induced over the training instances, while the

1Sensitivity and specificity are independent of prevalence in the sense that they are class-
conditional proportions.
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Figure 2.4: The effect of undersampling on separator induction. ŵ is the (biased) plane

induced over the entire dataset, w∗ the optimal plane (w.r.t. the underlying distributions).

The light grey lines depict the lines induced over independently drawn balanced bootstrap

samples of the training data. Note that all of these are less biased (nearer w∗) than ŵ.

induce a biased ŵ. Removing majority instances from D until |D+| = |D−| effectively
removes π from this equation. Thus, for a separator induced over an undersampled
dataset, the condition under which we expect a biased plane becomes:

Cfp

�

Rw∗
+

G(x)dx > Cfn

�

Rw∗
−

P (x)dx (2.14)

Crucially, this removes the imbalance component from the inequality (it becomes
π on both sides). To illustrate the effects of this, recall the toy example depicted in
Figure 2.2, in which training instances are drawn disproportionately from two latent
one-dimensional Gaussians. In Figure 2.4, we draw 10 planes induced over balanced
samples taken from the training set. All of these are less biased (closer to w∗) than the
separator induced over the entire training dataset (ŵ). However, one can see that this
is also a high-variance procedure – different re-samplings beget very different planes.
We will now discuss how to mitigate this property via bagging (58).

2.2.3.2 Bagging for Imbalance

Bagging is a method of aggregating classifiers induced over independently drawn boos-
trap samples (58). Bootstrapping is a sampling mechanism that has traditionally been
used to estimate the (true) standard error of a summary statistic calculated over an
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Figure 2.2: The bias of a linear separator induced over an imbalanced empirical
sample in a one-dimensional example. Here the underlying distributions are shown,
as well as a training sample comprising a few instances from the minority class
(the ×’s) and ten times as many from the majority class (the �’s). The solid
line, w∗, is the optimal separator, w.r.t. the underlying distributions; i.e., this
classifier will jointly maximize sensitivity and specificity over any draw from P
and G. The dotted line, ŵ, is the max-margin loss-minimizing separator induced
over the empirical sample. Note that ŵ is biased toward the minority class, w.r.t.
w∗. We also note that for certain measures of performance, ŵ is indeed a better
classifier than w∗. Indeed if the test sample is also imbalanced, ŵ will result in a
higher overall accuracy and is nearer to the Bayes optimal classifier than w∗. But
again, we are not particularly interested in overall accuracy. This further illustrates
the importance of metrics in classification for imbalanced datasets.
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solid line (w∗) depicts the optimal separator of the underlying distributions, as-

suming we are interested in maximizing sensitivity and specificity over arbitrary

draws from the latent distributions. In the example shown, the former is clearly

skewed toward the minority class. We now formalize the intuition captured by

Figure 2.2 more precisely.

2.2.1.1 The Bias of Empirically Estimated Separators

We begin with the ‘two-sample’ scenario introduced above. We restrict ourselves

to the task of inducing a loss-minimizing separating hyperplane w that splits the

input feature space into two half-spaces, Rw+ and Rw−. Instances that fall in the Rw+

region (left side of Figure 2.2) are predicted to belong to the minority (positive)

class, and those in Rw− to the majority (negative). Aside from empirical loss

minimization over a training set D, we make no further restrictions regarding

the parameter estimation procedure. Indeed, there may be an infinite number

of equivalent planes (i.e., loss-minimizing weight vectors) for a given training

dataset;1 we assume only that the selected ŵ is one of these. As a notational

convenience, we superscript R’s with the planes that delineate them. We assume

that the costs of false positives and false negatives are known, and denote these

by Cfp and Cfn, respectively.

Let us assume that the objective when training a classifier is to induce a sep-

arating plane w∗ that maximizes per-class accuracy over arbitrary draws from

the latent distributions P and G. We emphasize that this assumption is consis-

tent with the standard metrics for classifier evaluation under imbalance, which

are typically averages of rates. The most widely used of these metrics is per-

haps the F-measure, which is a weighted harmonic mean of specificity and recall

(Equation 2.4).2 Another popular metric for imbalanced datasets is the geomet-

ric mean or G-mean (93), which is the square root of the product of class-wise

accuracies, that is, sensitivity and specificity (Equation 2.5). By definition, these

metrics are independent of the prevalence of the minority class, and thus one is

1These may be equivalent in terms of loss-minimization, however if we are using SVM, the
‘optimal’ (max-margin) solution will be unique.

2Note that when precision is used instead of specificity, F2 is not independent of prevalence,
because precision will depend on prevalence. However this metric still incorporates recall, which
measures sensitivity to minority instances regardless of their prevalence.
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tacitly ignoring the prevalence observed in D. Maximizing these metrics there-

fore agrees with minimizing Equation 2.6. Alternatively, this objective can be

viewed as learning under the minimax assumption, in which case we attempt to

minimize the maximum loss under an arbitrary “covariate shift” (96).

In light of the preceding discussion, we define the optimal plane as follows

w∗ = argmin
w

L.5(w) (2.6)

where L.5(w), the loss with respect to a balanced mixture of the latent distribu-

tions and is defined as follows:

L.5(w) = Cfn

∫

Rw
P (x)dx+ Cfp

∫

Rw+

G(x)dx (2.7)

Ignoring the respective costs for a moment, the first term corresponds to 1−sensitivity,

and the second to 1−specificity. In terms of minimizing these (i.e., maximizing

sensitivity and specificity), w∗ is thus the ideal separator with respect to the

underlying distributions. The costs effectively allow one to weight sensitivity

against specificity. Now consider the effect of imbalance. We denote the preva-

lence of the minority class in the training set by π (note that π < .5) and Dπ

to denote the distribution over all datasets drawn from P and G with minority

prevalence π. Then the expected empirical loss of an arbitrary w is:

EDπ [L(w)] = πCfn

∫

Rw
P (x)dx+ (1− π)Cfp

∫

Rw+

G(x)dx (2.8)

We can also consider the empirical loss incurred over a particular dataset, D:

LD(w) =
1

|D|(Cfn|{x|x ∈ D+ ∧ x ∈ Rw−}|+ Cfp|{x|x ∈ D− ∧ x ∈ Rw+}|)

We denote by ŵ a plane that minimizes empirical error over a particular draw

from Dπ. We claim that minimizing the empirical loss will probably result in a

plane that is skewed toward the minority class, with respect to w∗. We analyze

the specific conditions under which this is the case, and show that the problem is

exacerbated by imbalance. More specifically, we are interested in the conditions
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under which the induced region delineating the positive instance space Rŵ+ is

smaller than the corresponding region induced by w∗ with respect to the loss

over the underlying distributions. When using inequalities (as in Equation 2.12)

we will slightly abuse notation by implying the following scalars for Rw+ and Rw−:

Rw+ =

∫

Rw+

P (x)dx (2.9)

Rw− =

∫

Rw−

G(x)dx (2.10)

(2.11)

Then we can formalize our notion of bias as follows:

Rŵ+ < Rw
∗

+ (2.12)

Because we are inducing a classifier over an imbalanced training sample, the

expected empirical loss-minimizing hypothesis will be biased toward P , with

respect to w∗. This is because w∗ minimizes L.5, i.e., loss with respect to draws

from a balanced mixture of P and G, whereas ŵ minimizes the empirical loss

incurred on imbalanced samples.

Figure 2.3 provides intuition as to why this is the case via a simple one-

dimensional example. The top plot shows the latent distributions (as before, we

are arbitrarily assuming that P is the distribution to the left, i.e., the solid black

line). Immediately below, we see the costs contributed by the two distributions

for separators running along the x-axis. This is shown both respect to balanced

samples, in which case the distributions contribute equally to the incurred cost,

and with respect to imbalanced samplings. In the latter case the contribution of

P (the minorities) is reduced by a constant.

We demarcate the point at which expected cost is at a minimum for the

empirical loss, i.e., with respect to imbalanced samples, by the dotted vertical

line; this corresponds to the expected ŵ over an imbalanced training dataset.

Similarly, we demarcate the loss minimizing point for the balanced case by the

solid vertical line; this corresponds to w∗. We show these points on all three
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Figure 2.3: A graphical illustration of why linear separators induced on imbal-
anced datasets are biased, w.r.t. w∗; see text for discussion.
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bottom plots. The corresponding losses are shown in the third plot (second

from the bottom). The thinner line corresponds to the total expected loss in the

empirical case; the thicker line to the loss incurred w.r.t. both distributions over

balanced samples. Finally, we show the gradient of the loss in the bottom plot:

this is at 0 when loss is at a minimum. We see that this loss is at minimum (the

gradient of the loss is at 0) at a biased point, i.e., a ŵ satisfying Equation 2.12.

We can quantify when we should expect the induced classifier (ŵ) to be

biased. In particular, for latent distributions P and G, and training datasets

with minority prevalence π, the expected loss given by Equation 2.8 suggests

that we will probably induce a biased separator when:

(1− π)Cfp

∫

Rw
∗

+

G(x)dx > πCfn

∫

Rw
∗
−

P (x)dx (2.13)

That is, when w∗ would incur a greater empirical cost than some alternative

hypothesis wγ because of the disproportionate contribution of false positives

to this cost. In such cases, shifting w∗ toward the minority class will reduce

the empirical cost over D, giving rise to a biased, empirical loss-minimizing

hypothesis. In the following few sections, we will discuss methods for handling

imbalance in light of this view of bias.

2.2.2 Why Weighted Empirical Cost Minimization is not Suffi-

cient

Equation 2.13 decomposes the likelihood of inducing a biased separator into three

sub-components: prevalence (π), costs quantifying mistakes made on instances

belonging to the respective classes, and (latent) distributional characteristics.

It would seem that the straight-forward strategy to handling imbalance, then,

would be to fiddle with the Cfp and Cfn variables – in particular to penalize false

negatives more heavily than false positives, or otherwise modifying the objec-

tive function to achieve this implicitly. We will refer to the family of methods

that attempt to mitigate the effects of imbalance by assigning different costs to

false positives/negatives during induction as weighted empirical cost minimizing
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learners. Many methods of this type have been proposed in the literature, e.g.,

(106, 175).

However, modifying the empirical cost structure will often have no effect at

all. In particular, if the instances comprising the classes in the training dataset

are separable, modifying the cost of false negatives relative to that of false posi-

tives in the objective function will not reduce bias. This is trivially true; increas-

ing the cost of false negatives will not budge the induced ŵ if there are none in

the first place.1

One can quantify the conditions under which modifying the empirical cost

of false negatives/positives will be effective. Consider that this can reduce bias

(Equation 2.12) if and only if it affects the loss incurred over D (Equation 2.9).

For the moment, let Cfp = Cfp = 1. Denote the empirical loss-minimizing plane

induced in this case by ŵ1. Increasing the cost of a false negative to β times

that of a false positive will produce a different plane only if there exists a point

closer to the majority half-space than ŵ1, i.e., if ŵ1 results in at least one false

negative. If no such point exists, ŵ1 will already be loss-minimizing, regardless

of β.

Fixing ŵ1, and assuming π|D| minority samples, the probability that such a

point will have been observed in D is

1− (

∫

R+
ŵ1

P (x)dx)π|D| (2.14)

As the degree of imbalance increases (i.e., π decreases), the probability that

using weighted cost minimization over imbalanced training samples to counter

imbalance will be effective in reducing bias decreases. Equation 2.14 also suggests

that as the size of the training set increases, such strategies will become more

effective, in general. Both of these observations are borne out in our simulation

experiments (Section 2.2.4). The characteristics of P will also contribute to the

(in)effectiveness of cost-sensitive induction procedures, e.g., if P happens to be

dense around the plane in X defined by w∗, then weighting will improve classifier

performance. By contrast, in the case of unimodal distributions (as depicted in

1We note that in the case of SVMs, attempting to explicitly induce an asymmetric margin
(making it large for minority instances) (176) may mitigate this problem.
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Figure 2.2) draws from the tails of the distribution will likely be rare, and bias

will be pronounced.

2.2.2.1 Remarks on SMOTE

One of the most popular strategies for countering imbalance is the Synthetic

Minority Oversampling TEchnique (SMOTE) (35). SMOTE is ostensibly a sam-

pling strategy, insofar as it ultimately produces a balanced dataset on which to

induce a model, but we argue that with respect to imbalance, SMOTE behaves

similarly to the weighted empirical cost minimizing learners discussed above.

SMOTE works by interpolating the observed minority instances with one an-

other to create ‘new’, synthetic minority instances. In particular, this is done as

follows. For each minority instance xi, find the k minority points in D to which

it is nearest. Now create synthetic minority points from xi by selecting one of

these neighbors xn at random and creating a value for each feature j that falls

on a random point along the line connecting xij and xnj .

Due to the interpolation mechanism for creating synthetic instances, no

pseudo-minority point produced via SMOTE will ever be located outside of the

convex hull enclosing the observed minority instances. This observation im-

plies that the probability that SMOTE will reduce bias during induction over

an imbalanced dataset is similar to that for weighted empirical loss minimizing

techniques (Equation 2.14), i.e., SMOTE should work in cases that weighted

empirical loss minimizing methods work.

2.2.3 The Case for Undersampling and Bagging

We will now present arguments in favor of the undersampling plus bagging strat-

egy for mitigating imbalance in light of the preceding discussion.

2.2.3.1 Why Does Undersampling Work?

The idea of throwing away most of one’s data in order to induce a model seems

anathema to statistical inference, as generally the best strategy is to exploit

all available information. In spite of this, undersampling has proven effective

in the case of imbalance, more often than not outperforming more advanced
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methods (59, 80, 93, 106). The notion of ‘outperforming’, of course, pre-supposes

a metric of interest. Most of the empirical work in the literature on learning

under imbalance uses a weighted harmonic mean of recall and specificity (or recall

and precision), and we will follow this convention here. Indeed, the emphasis on

these metrics has motivated our interest in the balanced loss defined by Equation

2.7. Generally it assumed that recall is more important than overall accuracy on

the majority class; how much so will depend on the task at hand. In cases that

recall is emphasized more than recall, we might modify Equation 2.7 accordingly,

which would increase the bias of empirical loss-minimizing separators.

Undersampling is effective despite its simplicity because it reduces the prob-

ability that the induced separator will be biased. More specifically, consider

the inequality expressed in Equation 2.13, which quantifies the condition under

which we are likely to induce a biased ŵ. Removing majority instances from D

until |D+| = |D−| effectively removes π from this equation. Thus, for a separator

induced over an undersampled dataset, the condition under which we expect a

biased plane becomes:

Cfp

∫

Rw
∗

+

G(x)dx > Cfn

∫

Rw
∗
−

P (x)dx (2.15)

Crucially, this removes the imbalance component from the inequality (it be-

comes π on both sides). To illustrate the effects of this, recall the toy example

depicted in Figure 2.2, in which training instances are drawn disproportionately

from two latent one-dimensional Gaussians. In Figure 2.4, we draw 10 planes

induced over balanced samples taken from the training set. All of these are less

biased (closer to w∗) than the separator induced over the entire training dataset

(ŵ). However, one can see that this is also a high-variance procedure – different

re-samplings induce very different planes. We will now discuss how to mitigate

this property via bagging (26).

2.2.3.2 Bagging for Imbalance

Bagging is a method of aggregating classifiers induced over independently drawn

boostrap samples (26). Bootstrapping is a sampling mechanism that has tradi-
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Figure 2.4: The effect of undersampling on separator induction. ŵ is the (biased) plane

induced over the entire dataset, w∗ the optimal plane (w.r.t. the underlying distributions).

The light grey lines depict the lines induced over independently drawn balanced bootstrap

samples of the training data. Note that all of these are less biased (nearer w∗) than ŵ.

induce a biased ŵ. Removing majority instances from D until |D+| = |D−| effectively
removes π from this equation. Thus, for a separator induced over an undersampled
dataset, the condition under which we expect a biased plane becomes:

Cfp

�

Rw∗
+

G(x)dx > Cfn
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Rw∗
−

P (x)dx (2.14)

Crucially, this removes the imbalance component from the inequality (it becomes
π on both sides). To illustrate the effects of this, recall the toy example depicted in
Figure 2.2, in which training instances are drawn disproportionately from two latent
one-dimensional Gaussians. In Figure 2.4, we draw 10 planes induced over balanced
samples taken from the training set. All of these are less biased (closer to w∗) than the
separator induced over the entire training dataset (ŵ). However, one can see that this
is also a high-variance procedure – different re-samplings beget very different planes.
We will now discuss how to mitigate this property via bagging (58).

2.2.3.2 Bagging for Imbalance

Bagging is a method of aggregating classifiers induced over independently drawn boos-
trap samples (58). Bootstrapping is a sampling mechanism that has traditionally been
used to estimate the (true) standard error of a summary statistic calculated over an
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tionally been used to estimate the (true) standard error of a summary statistic

calculated over an empirical sample D by calculating this statistic over n inde-

pendently drawn ‘bootstrap’ samples taken from D.

Bagging is a natural extension of the bootstrapping technique for predictive

models that works as follows. We build an ensemble comprising B models, each

induced over a bootstrapped sample of the training data. When a new instance

is to be classified, each model makes a prediction, and the final, aggregate pre-

diction is taken as the majority vote. Typically, bootstrap samples are drawn

at random with replacement and i.i.d. from the original sample (62), and thus

reflect the distributional characteristics of the original dataset. In our case, this

would mean each sample would be imbalanced. This is undesirable because it

would create bootstraps equally likely to induce biased classifiers. Indeed, the

bagging methods proposed for imbalance advocate taking balanced samples, with

the exception of Hido and Kashima (79), who propose ‘roughly balanced’ sam-

ples as a ‘better motivated’ (statistically) approach. However, given that we are

aiming to approximate the boundary separating P and G, balanced bootstrap

sampling is a more appropriate approach here.

In particular, consider that classifier induction is an instance of the boot-
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strapping two-sample case, described by Efron (62). We observe a sample D

drawn from P and G, disproportionately. We are interested in estimating a sep-

arator w.r.t. these distributions, independent of the imbalance in the observed

sample. That is, during the induction of a discriminative model, we are implic-

itly estimating properties of P and G. In the case of empirical error minimizing

linear separators, we are effectively estimating the density of points around the

intersecting tails of the distributions. Two-sample bootstrapping provides a di-

rect mechanism for estimating this boundary. In general, bagging will improve

classifier performance when the individual members comprising the ensemble

are high-variance – this is exactly the case with classifiers induced from different

undersampled training datasets.

2.2.4 Simulations

We performed simulation experiments to systematically explore the empirical

implications of the preceding sections. We constructed a simple generative model

for creating instances that allowed us to experiment with various factors that,

given our theoretical assumptions and above derivations, ought to influence the

relative performance of various techniques for handling imbalance. The objective

here is to use this simple model to elucidate the conditions under which different

undersampling techniques might be effective.

We are specifically interested in exploring the scenarios in which undersam-

pling, and/or bagging classifiers induced over undersampled datasets (hereupon

referred to simply as bagging) outperforms other strategies for learning under

imbalance. In particular, we consider SMOTE (35), and cost weighted-SVM. Ob-

viously, there are many other existing techniques for handling imbalance with

which we could have experimented, but the selected approaches are: 1) com-

monly used and 2) prototypical, as other techniques tend to be special cases

or hybrids of these. In what follows we describe a simulation framework that

allows us to explore in what circumstances different undersampling techniques

work and when they will not.
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2.2.4.1 Simulation Framework

The generative model we used in our simulations is described by the plate dia-

gram in Figure 2.5 (note that all variables denoted by π parameterize Bernoulli

distributions). This is essentially Näıve Bayes de-constructed, in the sense that

when generating an instance x, feature-values are drawn conditioned on the in-

stance label but independent of one another. In this simulation, we consider

only binary features, i.e., each feature is either 1 or 0. We will denote feature

j of instance i by xij . Without considering additional dataset characteristics

(sparsity, noisiness), the label yi, is 1 (i.e., a minority instance) with probability

πy. We associate with each (non-noisy) feature a polarity, which is drawn from a

Normal distribution. The mean, µ, of this distribution determines how strongly

features correlate with their labels – thus a larger µ here implies an ‘easier’ task.1

The generative procedure we used is as follows.

First, each feature j is designated as a noisy feature with probability πN

(i.i.d.). For each instance xi, we set yi = 1 with probability πy, else yi = 0.

We then generate feature-values for xi conditioned on yi and the ‘feature-level’

variables pS and pN . In particular, xij is set to 1 with a probability reflecting

either polarity, noise (if j has been designated as a noisy feature), or sparsity. In

the first case (noise), the probability of xij assuming 1 is governed by a polarity

drawn from a (truncated) normal with mean µ. If, instead, the feature has been

designated as noisy then xij is selected as 1 or 0 randomly, independent of yi.

Finally, every xij is zeroed out with probability πS , inducing the desired sparsity.

Aside from the prevalence πy, there are two parameters of particular interest

that affect feature values: πN , which dictates the amount of feature-noise, and

πS , which we call ‘sparsity’. The former encodes the expected proportion of

features that will contain no information regarding the label of the instances in

which they are observed, i.e., features for which it is the case that p(xij = 1|yi) =

p(xij); no polarities are associated with such features. The latter (sparsity)

encodes how sparse the generated instances will be: we zero out any given feature

in any instance (independent of its label) with probability 1− πS .

1We truncate this Gaussian to constrain values between 0 and 1, however we note that the
µ’s we use are near enough .5 (and the variances we use small enough) that such values are
extremely unlikely in the first place.
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Figure 2.5: The plate diagram corresponding to our simulation scenario. See text
for details.

To summarize, we use a simple multinomial model to generate data. This

generative model allows us to explore the effects of various parameters of interest,

including: dimensionality (d, which is external to the plate diagram, as it is set

prior to generation); the degree of imbalance in the dataset πy; the proportion

of uninformative features in the data πN ; and the sparsity of the data, πS . The

final probability of a feature j being set to 1 in a generated instance is governed

by p∗ in Figure 2.5; this may either reflect the (truncated) polarity of the feature,

or chance (if j has been designated ‘noisy’), or it may have been zeroed out due

to pS .

2.2.4.2 Results From Simulation Experiments

We now present a series of experiments that explore the effects of altering the

parameters outlined above to support the arguments presented in earlier sections.

In all experiments shown, we fixed µ at .6, with a relatively tight σ2 of .02 –

i.e., the results shown are for datasets in which non-noisy features are relatively

strongly correlated with classes. In all experiments, we generated both a training

and a test set with the same parameters.

SMOTE requires specifying the percentage of synthetic minorities to be

added to the dataset; for example, setting this to 100% will effectively double

the minority class size by adding synthetic instances. For our purposes, we ran

experiments with this parameter set across a few orders of magnitude (100% and
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1000%) and display results for the best performing parameter.1 For weighted-

SVM, we used LibSVM’s (34) implementation, and similarly experimented with

a few orders of magnitude (100, 1000) for the parameter expressing the cost of

false negatives relative to false positives, again showing the best result achieved

for each experiment.

For undersampling, we threw majority instances away at random until the

training set was balanced. Finally, for bagging, we built an ensemble of eleven

classifiers induced over independently constructed undersampled datasets,2 and

predictions were taken as a majority vote over these. Both undersampling and

bagging therefore include a stochastic element. We thus performed 10 indepen-

dent iterations of each experiment with these methods to assess variability (error

bars in the plots show best and worst performance over these runs).

Classifier evaluation over imbalanced datasets is inherently tricky. In prac-

tice, the relative costs of false positives (negatives) would have to be somehow

elicited from the domain expert, and a weighted metric reflecting these costs

could then be used to assess performance. For this work, we don’t have these

costs explicitly, and thus we take the standard approach of using a weighted

harmonic mean of recall and specificity. Specifically, we use F spec
2 , in which sen-

sitivity (also called recall) is considered more important than specificity.3 These

metrics were defined in Equations 2.1 through 2.4.

The first experiment we conducted considered the effect of increasing dimen-

sionality on the induced classifiers’ performances. According to Section 2.2.1,

increased dimensionality should lead to decreased utility of the empirical-cost

adjustment strategies (SMOTE and cost weighted-SVM), because in general as

dimensionality increases, so too will the likelihood of the training data being

separable, modulo the prevalence πy and training sample size |D|. For these

experiments, we set the sparsity parameter πS to .5, and we did not include any

noisy features, i.e., all features were informative. The results are shown in Figure

2.6. In all cases, SMOTE and weighted-SVM both improve performance rela-

1These almost universally performed the same.
2The committee size of eleven was arbitrarily selected.
3Recall that we use specificity rather than the more popular precision when calculating F2

because these metrics together provide more information than recall and precision.
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Figure 2.6: Simulation experiments investigating the relationship between dimen-
sionality and F spec

2 . Dimensionality runs across the x-axis (log-scale) from 10 to
1000 dimensions. The plots show results for experiments with varying levels of
minority prevalence πy. In particular, sub-figures (a), (b) and (c) correspond to
πy = .05, πy = .1, πy = .2, respectively. For all experiments, the training and test
set comprise 100 and 1000 examples, respectively. See text for further details.
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Figure 2.7: Simulation experiments investigating the relationship between training
set size and F spec

2 . In all experiments, the dimensionality of the feature space is
fixed at 100. The minority prevalences in sub-figures (a), (b) and (c) correspond to
πy = .05, πy = .1, πy = .2, respectively.
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tive to baseline SVM at lower dimensionalities, but their relative performance

regresses to the baseline as the dimensionality increases, as we predicted.

The ‘hump’ seen in the first two cases appears because up to a certain di-

mensionality, the additional informative features increase model recall. However

because of the low prevalence, the classifier is unable to learn which are the

features associated with the minority class in higher dimensions. In 2.6(c), the

prevalence appears to be sufficiently high to ameliorate this issue. Note that

bagging not only reduces variance with respect to only undersampling (as can

be seen in the corresponding error bars), but also performs better, on average.

The second experiment shown examines the relationship between the train-

ing set size (|D|) and classifier performance. Figure 2.7 plots this against per-

formance, again for three prevalences (.05, .1 and .2). In the first case, when the

prevalence is low, the undersampled and bagged approaches consistently dom-

inate, until the training set size reaches ∼3000, at which point weighted-SVM

manages to catch up. When the degree of imbalance is less extreme, e.g., .1

and .2, the empirical weighted cost methods more quickly achieve performance

comparable to the sampling strategies. This is precisely what we would expect in

light of Equation 2.14. Note that undersampling and bagging again dominate,

and again the latter both performs better and reduces variance, compared to

undersampling alone.

We also considered the relationship between empirical error on the train-

ing set and the performance of the induced classifier. Our hypothesis was that

empirical weighted cost strategies (e.g., weighted-SVM and SMOTE) would be

effective in countering imbalance only when the baseline SVM incurred empirical

error on the training set. This hypothesis follows directly from the discussion

in Section 2.2.2. Strategies that upweight the cost of, e.g., false negatives w.r.t.

false positives will work only insofar as they may push the separating plane de-

marcating the minority space until it encompasses the minority instance in the

training set nearest the majority class. Once this outlying minority instance

is correctly classified, modifying empirical costs will have no effect. Nor will

SMOTEing work in this case, because due to the interpolative method of point
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Figure 2.8: The y-axis is the average difference (improvement) in F spec
2 between

the corresponding method and baseline SVM over hold-out test sets (∆F spec
2 –

when this difference is large, the corresponding method for handling imbalance was
effective in that it improved performance). Three methods are shown: SMOTE,
weighted-SVM and bagged. (Results for undersampled were similar to bagged).
On the left-hand side of the plot, the average ∆F spec

2 is shown for the methods in
datasets for which there was 0 empirical error (i.e., separable datasets). Note that
the empirical weighted cost strategies provide no benefit over baseline, but bagging
is effective. Results for cases where there was empirical error on the training set
are shown on the right-hand side. In these cases, SMOTE and weighted-SVM are
competitive with bagging.

generation, any synthetic point will necessarily fall inside of this outlying minor-

ity instance.

To explore this conjecture empirically, we ran experiments over fifty syn-

thetic datasets generated at random. We drew the parameters dictating various

properties of the dataset at random from sets of values we thought reasonable.

In particular: for dimensionality, we drew uniformly from {10, 100, 500, 1000,

2000}, and for training set size from {100, 200, 300, 500, 1000}.1 We drew πN

(noise) uniformly from {0, .2, .3, .4, .5, .6, .7, .8}, πS (sparsity) uniformly from

{0, .2, .5, .6, .7, .8, .95. 99}, µ (polarity) from {.55, .6, .65} and πy (prevalence)

from {.05, .1, .15, .2}.

Figure 2.8 displays summary results from these fifty datasets. In partic-

ular, we show the average improvement, in terms of F spec
2 , achieved by each

of the strategies with respect to baseline SVM. The left-hand side corresponds

to datasets over which baseline SVM achieved perfect accuracy, while the right-

hand side plots results for datasets on which the baseline SVM incurred empirical

1In all cases we tested over a few thousand generated instances.
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error. In the former case, neither SMOTEing nor weighting has any effect on

classifier performance, but bagging does; when there is empirical error, how-

ever, both weighted SVM and SMOTEing are effective, thus supporting our

conjecture. The message here is that bagging is effective even when a standard

SVM can perfectly separate the training dataset, whereas empirical weighted

cost strategies are not.

To summarize our results over synthetic datasets, we have shown that: 1)

bagging/undersampling consistently outperformed other strategies in terms of

predictive performance on synthetically generated imbalanced data (bagging do-

ing so with lower variance than undersamping alone), and 2) as expected per

our discussion in Section 2.2.1, undersampling/bagging was particularly effec-

tive, relative to SMOTE and weighted-SVM, in cases when the training dataset

was not separable. Moreover, as is implied by Equation 2.14, this relative per-

formance was observed to correlate with the prevalence (π) and the training set

size (D).

Strictly speaking, these results – and the theory developed above – hold only

for linear separators. However, the fundamental problem does not change as a

function of the classifier. The small sample from the P will inherently lead to

decision surfaces that favor the majority class. This explains the empirically

poor performance of non-linear classifiers induced on imbalanced datasets (80).

We leave an analytic investigation into the non-linear case for future work.

2.2.5 Empirical Results on Benchmark Datasets

We now experiment with ‘real’ datasets to see if the patterns observed in the

synthetic case (above) hold. We used sixteen datasets with varying degrees

of imbalance; thirteen of these were taken from the UCI dataset repository, the

other three from our biomedical text classification task. These are summarized in

Table 2.1. Additional information regarding the latter three systematic review

datasets is provided in Table 2.2: we will use these datasets throughout this

thesis. Here we define the ‘sparsity’ of a dataset as one minus the expected
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name N d π sparsity

car 1728 21 .040 .714
cmc 1473 24 .226 .625
ecoli 336 9 .104 .222
german 1000 61 .300 .721
glass 214 9 .079 0
haberman 306 3 .265 0
letter-a 20000 16 .039 0
letter-vowel 20000 16 .194 0
nursery 12960 27 .025 .704
pima 768 8 .349 0
splice 3190 287 .241 .790
vehicle 846 18 .251 0
yeast 1484 9 .289 .111

proton beam 4751 10025 .051 .993
copd 1600 6526 .122 .989
micronutrients 4010 11524 .064 .992

Table 2.1: Characteristics of the datasets we used in our experiments. The top
thirteen are taken from the UCI dataset repository; the bottom three are systematic
review datasets.

sp
ec

Figure 2.9: F spec
2 over test-sets for the datasets summarized in Table 2.1. Note

that for the very high dimensional datasets, undersampling and bagging dominate
(the latter again having lower variance).
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Dataset Total citations (N) Retrieved in Included in the
full text (% of N) systematic review (% of N)

Proton beam 4,751 243 (5.1) 23 (0.5)
COPD 1,606 196 (12.2) 104 (6.5)
Micronutrients 4,010 258 (6.4) 139 (3.5)

Table 2.2: Three citation screening datasets that we will use throughout this
thesis. We will usually use level-1 decisions as labels as defined in the preceding
chapter. That is, we will consider as relevant the citations that were retrieved in
full text and irrelevant those that were not. The proton beam dataset is from a
systematic review of comparative studies on charged particle radiotherapy versus
alternate interventions for cancers (157). The COPD dataset is from a systematic
review and meta-analysis of all genetic association studies in chronic obstructive
pulmonary disease (32). The micronutrients dataset is from a systematic empirical
appraisal of reporting of systematic reviews on associations of micronutrients and
disease (38). Note the class imbalance in all three datasets.

proportion of features present in a given instance drawn from that dataset.1

Sparsity is particularly relevant to textual data, wherein every word is relatively

rare, and the vectors representing documents tend therefore to be sparse.

We first randomly split all of the datasets shown in Table 2.1 into train and

test sets, comprising 10% and 90% of the corresponding datasets, respectively.2

We then conducted the same experimental analysis as was described for the

simulated data case in Section 2.2.4.

Figure 2.9 plots F spec
2 against dimensionality for all of the learners across

all datasets. The most striking feature of this plot is the departure of bag-

ging/undersampling at extreme dimensionalities: the difference in F spec
2 becomes

substantial at dimensionalities of 104. At this point, as in our simulations, both

SMOTE and weighted-SVM regress to baseline SVM. Another consistent pat-

tern that emerges is that bagging again performs comparably (and often better)

than undersampling alone and has a lower variance.

In addition to the utility of bagging for handling imbalance, the results here

corroborate, and provide explanation for, previously reported observations. For

example, Japkowicz (83) observed that as sample size increases, imbalance be-

comes less of a problem, in general. One can see why this is the case under our

model: eventually a sufficient number of draws are made from the minority class,

and it can thus be adequately characterized. (This is supported by Figure 2.7).

1We make no explicit distinction here between a feature not being observed (i.e., assuming
a value of 0) versus ‘missing’.

2We use a relatively small portion of the data for training because in practice labeled data
is typically scarce. In any case, we end up experimenting with a wide range of training set sizes
due to the variance of the dataset sizes (N) in Table 2.1.
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Figure 2.10: Results from a regression analysis of our empirical results. The
top figure shows the estimated trends of the relative sensitivities of the bag-
ging/undersampling and SMOTE methods. Specifically, each sub-plot shows the
estimated effect of adjusting the corresponding parameter while holding all others
constant at the point demarcated by the red lines. Bagging/undersampling works
better than SMOTE, in terms of recall, as: prevalence decreases, the amount of
training data decresases, dimensionality increases and as data becomes sparse. This
can also be seen by considering the bottom plot, which shows the point estimates
for the coefficients corresponding to these attributes.
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Figure 2.9 is somewhat difficult to parse, and, further, it is restricted to

one dimension (dimensionality), despite the fact that the other characteristics

of interest (e.g., π) are not fixed, as they were in the simulations by construc-

tion. For interpretative purposes, we therefore performed an analysis on these

empirical results to explore the effect of the different dataset characteristics on

the respective methods for handling imbalance. More specifically, we evaluated

the association between the recall of the five techniques and four characteristics

of the datasets (prevalence, log-transformed training set size, log-transformed

number of dimensions, and sparsity).

We used a two-level generalized linear mixed-effects regression that allows for

between-classifier correlations within each dataset, and for common effects of the

characteristics of interest across datasets. We are thus assuming that predictive

sensitivity is a function of the particular dataset under consideration and the

classification approach being used (these are the two levels): coefficients in the

regression model thus correspond to the effect of the datasets and to that of the

classifiers. In particular, we modeled the dependency of classifier performance

(recall) on each characteristic with classifier-dataset interaction terms. Such

hierarchical regressions are often used to explore which factors affect the relative

performance of diagnostic tests (134).

Figure 2.10 displays the results from this analysis. Figure 2.10(a) shows

how the predicted mean recall of SMOTE and bagging (i.e., predicted by the

model induced over the empirical results) change for each classifier induced as

a function of the dataset characteristics of interest. For each characteristic, we

hold the values for the others constant; the vertical lines demarcate this fixed

spot for each characteristic. The trends are as we expect: SMOTE works well

when prevalence and training set size are large, but poorly when they are small,

as is predicted by Equation 2.14. Similarly, SMOTE works comparatively well

in lower dimensionality and sparsity (these can be seen as properties of the

underlying distribution, P ).

In Figure 2.10(b), we show the estimated coefficient of each of the aforemen-

tioned dataset characteristics in terms of their effect on the difference between

the performance of bagged and that of the empirical weighted cost methods
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(SMOTE and weighted-SVM). The circles and squares correspond to these point

estimates for SMOTE versus bagged and weighted versus bagged, respectively,

and the horizontal bars depict the 95% confidence interval. The directions of

these coefficients are as expected, given our theoretical exposition and our sim-

ulation experiments; both SMOTE and weighted-SVM perform better (worse),

w.r.t. the undersampled bagging approach, as the prevalence π and the training

set size D increase (decrease). The reverse holds for dimensionality and spar-

sity: as these decrease, the effectiveness of the empirical weighted cost meth-

ods decreases relative to bagging. In the low-dimensional case, the empirical

cost weighting strategies (SMOTE, weighted) are competitive with undersam-

pling and bagging. In higher-dimensions, however, these strategies regress to the

baseline.

2.2.6 Conclusions

In this section we have considered the task of classification in imbalanced scenar-

ios from a probabilistic perspective. We ran simulation experiments that corrob-

orated this framework. On this interpretation, we demonstrated the scenarios

in which empirical error minimizing (linear) classifiers induced over imbalanced

datasets will likely induce a biased separator. We also quantified the conditions

when weighted empirical cost methods for mitigating the effects of imbalance,

such as weighted-SVM, will likely fail to improve performance. We will next

consider the problem of estimating class probabilities in imbalanced scenarios.

2.3 Probability Estimates for Imbalanced Data

Thus far we have considered the effect class imbalance has on classification. We

will now shift our focus to estimating class probabilities in imbalanced scenar-

ios. Obtaining good probability estimates is imperative for many applications,

e.g., medical diagnosis, risk modeling, etc. The increased uncertainty (and typ-

ically asymmetric costs) surrounding rare events increases this need. Experts –

and classification systems – often rely on probabilities to inform decisions. In

our own case, for example, we would like to be cautious in classifying citations
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as irrelevant; i.e., we would like only to do so when there is sufficiently high

probability that this is indeed the case.

However, we demonstrate in this section that class probability estimates at-

tained via supervised learning in imbalanced scenarios systemically underesti-

mate the probabilities for minority class instances, despite ostensibly good over-

all calibration. Motivated by our exposition of this issue, we propose a simple,

effective and theoretically motivated method to mitigate the bias of probabil-

ity estimates for imbalanced data that bags estimators induced over balanced

bootstrap samples. (This, of course, is similar to the above proposed ensemble

method for classification). This approach improves performance on the minor-

ity instances without sacrificing overall calibration. We show that additional

uncertainty can be measured via a Bayesian approach by considering posterior

distributions over bagged probability estimates.

There has been a substantial amount of work investigating attaining prob-

ability estimates from supervised learning in general ; notably (121) and (179).

However there has been little work investigating the reliability of class member-

ship probability estimates for imbalanced data. This is surprising because it is

in such cases that probability estimates could potentially be of most use. In this

work we focus on calibrated probability estimators, which transform raw scores

from classifiers into probability estimates. We focus on calibrated methods be-

cause they are widely used, have desirable theoretical properties (42) and have

been shown to achieve good probability estimation performance (121). Moreover,

calibration is a general strategy that can be used to derive robust probability

estimates from any classifier that provides a ‘raw’ output measuring confidence.

In this section we demonstrate that calibrated probability estimators produce

systemically biased estimates in imbalanced scenarios. Specifically, while such

estimators tend to have good overall calibration, they fare poorly in terms of their

probability estimates for minority instances; these tend to be severely underes-

timated (i.e., low probabilities are wrongly assigned to truly positive minority

examples). Such mistakes are especially problematic given the asymmetric costs

common in imbalanced scenarios. Indeed, the motivation for attaining probabil-

ity estimates is often to classify instances as belonging to the majority class only
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when we are quite sure of it (this is the basic idea behind cost-sensitive learning

(63)). But if the probability estimates for the minority instances are unreliable,

then they are effectively useless for this purpose.

Aside from cost-sensitive learning applications, it is intuitively agreeable that

a ‘well-calibrated’ probability estimator performs comparably with respect to

both classes.1 Consider that in a task with a minority prevalence of 1%, a model

that uniformly predicts p=0% for every instance will be ostensibly well-calibrated

(as we illustrate later) – according to most metrics and reliability diagrams (51)

– despite its manifest uselessness. Another way of looking at the problem is to

consider learning under the “covariate shift” assumption, in which the prevalence

in the test distribution may diverge arbitrarily from that in the train set (22).

The overall calibration of the aforementioned naive probability estimator would

drop precipitously in cases in which minority prevalence is greater in the test

than in the train set.

It is now well-appreciated that in classification tasks, accuracy is a poor

measure of performance for imbalanced data (128, 170). Alternative metrics

that emphasize good performance with respect to both classes are now widely

accepted as more suitable for imbalanced data (e.g., sensitivity/specificity via

ROC analysis, the G-mean) (80). This is analogous to measures of overall cali-

bration being uninformative with respect to probability estimation in imbalanced

scenarios. In Section 2.3.2, we propose a new metric for measuring probability

calibration under imbalance: the stratified Brier score, which decomposes the

classic Brier score (28) into elements reflecting its calibration w.r.t. minority

and majority instances.

2.3.1 Estimating Probabilities in Supervised Learning

The standard method for estimating probabilities in the supervised learning

framework is to regress measurements correlated with predicted class labels out-

put by a trained classifier against the true target labels (121, 127). This process

is called calibration. By convention these measurements are denoted by fi, where

i indexes instances. This calibration squashes the arbitrarily scaled fi’s into the

1We restrict ourselves to binary classification problems.
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[0,1] range permissible for probabilities. When the sigmoid form is used, this

method is referred to as Platt scaling (127). Platt scaling thus assumes that

probabilities are generated as follows:

P (yi = 1|fi) =
1

1 + exp{−β0 − β1fi}
(2.16)

Where the fi’s are scalars that are predictive of class membership. We focus

on two specific post-training calibration strategies: Platt calibration with SVMs

and with boosted decision trees. We selected these methods because they have

been shown to out-perform other supervised learning algorithms with respect to

class probability estimation (120, 121).

In the case of SVMs, fi is the signed distance of instance i from the hy-

perplane w, i.e., fi = wTxi. This was the method originally proposed by

Platt (127), and is now widely used (104). Niculescu-Mizil and Caruana, mean-

while, have proposed attaining probabilities via calibrated boosted decision trees

(120). More precisely, recall that in boosting one induces a sequence of learners

h0, h1, ... , hk over different distributions of the training set. These are in

turn associated with a set of weights α0, α1, ... , αk reflecting the their esti-

mated performance. A prediction is then taken as a function over these, i.e., as

sign(
∑

j αjhj(x)). The natural value for fi is then the sum of the weighted class

predictions over the ensemble, i.e.,
∑

j αjhj(x).

2.3.2 Evaluation of Estimated Probabilities

We now consider how to evaluate an estimator’s predictions. This is trickier than

evaluating classifiers because in the case of classification one predicts instance

labels, which for validation data are directly observed. By contrast, true class

probabilities are unknown, even when we have access to labels. One typically

uses the labels as a proxy in evaluation by assuming that positive (negative)

instances should be assigned high (low) probabilities. Thus an estimator that

predicts 1.0 for all positive instances and 0.0 for all negative instances would be

perfectly calibrated.

Figure 2.11 displays the overall and stratified residual errors of probability
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Figure 2.11: The bias of probability estimates attained via Platt regression for
an imbalanced dataset. The x axis is the absolute difference between the observed
labels and the corresponding probability estimates (i.e., |yi − P̂{yi|xi}|). Lower
scores thus imply better calibration. Each plot is a histogram showing the densities
of instances along this calibration metric. On the left, the histogram is shown
for all instances; most instances are very near 0, implying good calibration. The
middle and right-most plots show the corresponding histogram for the minority
and majority classes, respectively. One can see that calibration is quite poor for
the former class.

estimates (obtained via Platt’s method) for the instances comprising a partic-

ular imbalanced dataset.1 Specifically, each subplot shows histograms of the

absolute differences between the true (observed) labels and corresponding prob-

ability estimates, i.e., |yi− P̂{yi|xi}|. Density to the left therefore suggests good

calibration, as this implies probability estimates largely agree with the observed

labels. For example, if yi = 1 and P̂{yi|xi} = .99, the difference would be .01.

Were the estimate .01, on the other hand, the difference would be .99.

The left-hand side of Figure 2.11 shows this histogram for all instances, cor-

responding to overall calibration. Over 80% of instances are in the left-most bin,

implying that the estimator is well-calibrated, i.e., its estimates do not much

diverge from the observed labels. But this ostensibly good calibration belies the

unreliability of the probability estimates for the minority instances. One can see

this by looking at the middle plot, which includes only minority instances. In this

case, the estimates diverge strikingly from the observed labels; indeed the model

assigned a probability of belonging to the minority class of less than 20% to most

of the minority instances. In other words, the probability estimates for instances

comprising the minority class are completely unreliable (we demonstrate this on

sixteen datasets in Section 2.3.6). Looking at the rightmost plot, which shows

only the majority instances, one can see how this poor performance is hidden:

1The proton beam dataset described in the preceding section; see Table 2.2.
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calibration is nearly perfect on the majority instances, and these dominate the

dataset.

The Brier score (28) is one of the oldest and perhaps the most widely used

metric for assessing calibration. Similar to the residual errors considered above,

the Brier score measures the fit of probability estimates to the observed data. In

particular, it is the average squared difference between the observed label and

the estimated probability. Formally, this is defined in Equation 2.17 – here we

are assuming that y ∈ {0, 1}, and we are denoting by N the size of the sample

with which the model is being assessed (the test set).

∑N
i=0(yi − P̂{yi|xi})2

N
(2.17)

Intuitively, this score is small when the probability estimates are near the true

labels, and increases as they diverge. But there is a problem with the Brier score

in the case of imbalanced datasets; calibration may be good overall, but poor

for the rare class. Indeed, Figure 2.11 plots histograms reflecting each instance’s

contribution to the Brier-score. As we saw, this is low overall, but high for

minority instances.

This phenomenon is analogous to the now well-appreciated observation that

accuracy is a poor measure of classifier performance over imbalanced data (128).

Consider that in a task with a minority prevalence of 1% a classifier that naively

predicts that every instance belongs to the majority class will achieve 99% accu-

racy. Similarly in the case of probability estimation, a model that predicts p=0%

for every instance will look to be well-calibrated, according to most metrics, de-

spite its manifest uselessness. In the case of classification, alternative metrics

that emphasize good performance with respect to both classes are now widely

accepted as more suitable for imbalanced data (e.g., the F -score, G-mean). But

the corresponding problem for probability estimation – good overall calibration

masking unreliable estimates for minority instances – has not been addressed.

We propose the modified Brier-score, which is more appropriate for assessing

calibration in imbalanced scenarios.
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BS+ =

∑
yi=1(yi − P̂{yi|xi})2

Npos
(2.18)

BS− =

∑
yi=0(yi − P̂{yi|xi})2

Nneg
(2.19)

Taken together, the Equations 2.18 and 2.19 provide much more information

than the overall Brier score because they provide information regarding model

calibration for instances drawn from both both classes. This is analogous to de-

composing accuracy into sensitivity (recall) and specificity (or, similarly though

not equivalently, precision).1

2.3.3 The Bias of Probability Estimates for Imbalanced Data

Recall that the common approaches to inducing probability estimates in super-

vised machine learning rely on post-calibration, i.e., fitting a (usually sigmoidal)

function to raw outputs (39, 120, 121). Such strategies are theoretically moti-

vated (39) and have been shown to produce good probability estimates (121).

As we will show in Section 2.3.6, however, post-calibration results in biased

estimators. The problem of parameter estimation bias in imbalanced regression

scenarios has been considered by the econometrics community, notably by King

and Zeng (88), who demonstrate that P̂{y = 1} will be underestimated when

y = 1 is a rare class.

The problem arises due simply to the model having observed more points

drawn from the majority class (fi’s corresponding to majority instances) than

from the minority. The model thus naturally fits the distribution generating

the majority instances better than the distribution characterizing the minority

instances. From this perspective, the reason for poor performance with respect to

calibration is similar to the explanation for degraded classification performance

discussed in the preceding section (166).

This intuition is best communicated graphically. Consider Figure 2.12, which

depicts the fitted logistic for a simulated dataset. In this case, we assume the

fi’s for each class are drawn from separate latent Gaussians for the two classes.

1Recall that precision is defined as TP
TP+FP

, whereas specificity is TN
TN+FP

.
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Figure 2.12: The bias inherent in fitting a logistic function to imbalanced data.
Here we have two classes characterized by the shown latent Gaussian distributions.
The points represent observed instances; for example the fis of the majority (the
�s) and minority (the ×s) instances. Many fewer instances from the latter class
have been observed. The red line is the shape of the logistic function fitted to the
observed data P̂{yi|xi}; it underestimates the conditional probabilities of minority
instances belonging to the minority class.

(Note that this is in line with Hastie and Tibshirani’s method of fitting fi’s from

the respective classes to independent normals (76).) The fitted logistic is clearly

biased with respect to the latent distributions; it is ‘pushed over’ toward the

minority class, thus underestimating the conditional probability that y = 1 for

minority instances.

More formally, based on results due to McCullagh and Nelder (114), King

and Zheng (88) derive a closed-form expression for finite-sample size bias in

logistic regression. Following their example for illustration purposes, consider a

special case in which the true coefficient of the predictor is held constant (let

β1 = 1); then we need only estimate β0. The predicted probability is:

p̂i =
1

(1 + exp{−β̂0 − fi})
(2.20)

King and Zheng (88) show that the expected bias in the estimate of β0 is:

E[β̂0 − β] ≈ π̃ − .5
nπ̃(1− π̃)

(2.21)

Where π̃ denotes the true minority prevalence. In the case of imbalanced data,

π̃ << 0.5, implying that β̂0 will be an underestimate of β0. This results in

an underestimation of the probability that yi = 1. Another intuition here

is that the bias in the estimate is larger when imbalance is greater (because
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limπ̃→0
1

π̃(1−π̃) = ∞).1 This special case provides support for the empirical ob-

servation that imbalance is less of a problem when datasets are large: the bias

in β̂0 is inversely proportional to the sample size (166).

These issues have long been recognized in the statistics and epidemiology

literatures, and each community has developed distinct solutions to address the

same problem. For example, there are several approaches that adjust for the

small sample bias of logistic regression estimators (including the Haldane cor-

rection (169), Firth’s penalized maximum likelihood (64), and Bayesian logistic

regression). By contrast, epidemiologists have avoided such concerns altogether

by using (in the majority of investigations) balanced case-control studies, wherein

the number of cases (the ‘positive’ class) is set to be equal to the number of con-

trols (‘negative’ class) by design (27). Thus the problem of bias due to imbalance

in parameter inference is completely avoided in case-control studies due to their

design.

2.3.4 Obtaining Better Probability Estimates for Imbalanced

Data

From the above we can conclude that calibration in imbalanced scenarios will

be biased, systemically affecting the conditional probability estimates for those

instances comprising the minority class. This agrees with Figure 2.11 and our

extensive empirical results (which we present in Section 2.3.6). What can be

done to mitigate bias (and improve estimations) in imbalanced scenarios?

We propose undersampling as a means to accomplish this. Specifically, this

entails discarding majority instances (at random) from the training set and cal-

ibrating probability estimates (e.g., estimating β) on this balanced set. This is

analogous to the case-control sampling used in epidemiology that we mentioned

above (27).

Intuitively, we can see the effect of undersampling on calibration by returning

to the example introduced in Figure 2.12. The dotted line in Figure 2.13 shows

the estimation when the logistic is fitted to a balanced sub-sample of the original

dataset; contrast this with the solid line, which is the result of fitting the entire

1This limit is undefined in general; here π̃ is coming from the positive side.
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Figure 2.13: The effect of undersampling on fitting a logistic function to imbal-
anced data. The dotted line is the shape of the sigmoid induced fitting β only to the
enlarged instances; the other �s (majority instances) were discarded. For contrast,
the solid red line is the corresponding sigmoid fitted to all data.

sample, and it is clear that the former mitigates bias. Theoretically, it is easy

to see that the prevalence term in Equation 2.21 drops out (we note, however,

that this is only applicable to the special case derived by King (88)).

2.3.5 Bagging Probability Estimates

While undersampling will mitigate bias, it also introduces randomness: the par-

ticular majority instances sampled will greatly affect the estimate β̂. We can mit-

igate the variance inherent to this strategy via bagging (26). To bag probability

estimates, we induce k calibrated models over corresponding balanced bootstrap

samples. We then combine their outputs to form the estimated P̂{yi|xi} for a

given xi. The easiest method of combination is a simple average (Equation 2.22).

P̂{yi|xi} =
1

k

k∑

j=1

P̂j{yi|fi} (2.22)

The simple average has the practical advantage of being easy to implement

and fast to run. Indeed, despite building an ensemble of models, this approach

may actually reduce running time. For example, inducing an SVM over an

entire dataset often takes far longer than training several SVMs over small sub-

samples drawn from it.1 That said, it is also natural to consider weighting the

1Recall that the training time of SVMs scales quadratically with the number of instances.
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contribution of each constituent ensemble member by the certainty around their

prediction, as in Equation 2.23:

P̂{yi|xi} =
1

z

k∑

j=1

1

V ar(P̂j{yi|fij})
P̂j{yi|fij} (2.23)

Where V ar(P̂j{yi|fij}) denotes the variance of the prediction and z is the fol-

lowing normalization constant:

z =

k∑

j=1

1

V ar(P̂j{yi|fij})
(2.24)

It is natural to realize this weighting within the Bayesian framework by

postulating a generative model and then sampling from the posterior probability

estimates. Specifically, this can be done by assuming the following for each

ensemble member j:

yi ∼ Bernoulli(pi) (2.25)

logit(pi) = β0j + β1jfij (2.26)

That is, for each model’s predictive value fij , we assume that there exist coeffi-

cients that transform this value into the true probability. This is essentially the

assumption made any time calibration is used. The estimate of the probability

according to model j is then:

p̂ij =
1

1 + exp{−β̂0j − β̂1jfij}
(2.27)

And, as before, we assume the true probability is an aggregate of the constituent

estimates:

pi =
1

k

k∑

j=1

1

1 + exp{−β̂0j − β̂1jfij}
(2.28)

We fit this model using uninformative priors1 over the βs. We thus sample from

1Recall that an uninformative prior states that we have no prior belief regarding a random
variable.
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the posterior of the β estimates. At the cost of added complexity, the Bayesian

approach affords two major benefits. First, the uncertainty that each model has

about its predictions is implicitly taken into account due to the sampling mech-

anism. A model uncertain regarding its β estimates will produce wide-ranging

estimates during sampling, thus mitigating the contribution of their mean val-

ues. Conversely, a model with high certainty regarding its β̂s will repeatedly

make similar estimates, shifting the overall estimate (Equation 2.28) toward its

mean.

The second benefit that the Bayesian framework provides is that of an ad-

ditional measure of uncertainty. Specifically, one can take into the account the

empirical posterior distribution over the aggregated probability estimate, which

is not possible within the frequentist framework. We demonstrate the potential

utility of exploiting this uncertainty in Section 2.3.7.

Note that taking a simple average (as in Equation 2.22) can be interpreted

as ignoring the confidence in the estimates of the constituent members.

2.3.6 Empirical Results

The empirical results in this section demonstrate that standard supervised learn-

ing methods for probability estimation fare poorly on imbalanced data. More

specifically, we analyze probability estimates attained via the two calibration

methods reported to work best for supervised learning methods, namely (Platt-

calibrated) SVMs and boosted decision trees (120, 121). We show that while

overall calibration performance is good, calibration with respect to the minority

class is often completely off.

We used the same sixteen imbalanced datasets described above (summarized

in Table 2.1). We split each of these into train and test sets, the former com-

prising 10% of the dataset size (N). We induced probability estimators over

the train sets using two distinct methods: SVMs and boosted decision-trees,

obtaining probability estimates via calibration. These were selected due to their

popularity and demonstrated performance in accurately estimating probabili-

ties (120, 121). To measure the probability estimation performance we recorded
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Figure 2.14: Calibration (Brier scores) for probabilities estimated using Platt cali-
brated SVM, undersampled and bagged/undersampled. The y-axis on the left-hand
plot is the positive Brier score, which measures the goodness of the estimates for the
minority class; on right-hand plot it is the overall Brier score. Recall that the Brier
score measures the divergence of probability estimates from observed labels; lower
scores are thus better. The standard method of estimating probabilities provides
poor estimates for minority instances, but good overall calibration. Undersampling
(and bagging) improves performance w.r.t. the minority class without sacrificing
overall calibration.
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Figure 2.15: Boosted DT results (Brier scores of estimated probabilities). The
results largely agree with those presented in Figure 2.14. In this case, bagging
further improves calibration, in addition to reducing variance.
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standard SVM (Platt) US & bagged

dataset BS (SD) BS+(SD) BS−(SD) BS (SD) BS+(SD) BS−(SD)

car 0.033 (0.004) 0.729 (0.105) 0.004 (0.002) 0.175 (0.048) 0.126 (0.055) 0.177 (0.050)
cmc 0.175 (0.004) 0.592 (0.073) 0.053 (0.020) 0.237 (0.006) 0.228 (0.012) 0.239 (0.007)
ecoli 0.074 (0.013) 0.558 (0.178) 0.017 (0.011) 0.159 (0.029) 0.124 (0.032) 0.163 (0.033)
german 0.192 (0.006) 0.413 (0.067) 0.097 (0.027) 0.222 (0.003) 0.220 (0.016) 0.222 (0.008)
glass 0.079 (0.011) 0.782 (0.080) 0.019 (0.021) 0.274 (0.050) 0.278 (0.060) 0.273 (0.058)
haberman 0.201 (0.013) 0.526 (0.139) 0.082 (0.047) 0.258 (0.018) 0.252 (0.043) 0.260 (0.030)
letter-rec. a 0.008 (0.000) 0.156 (0.018) 0.002 (0.001) 0.042 (0.006) 0.043 (0.006) 0.042 (0.007)
letter-rec. vowel 0.150 (0.004) 0.599 (0.031) 0.042 (0.006) 0.205 (0.005) 0.198 (0.006) 0.207 (0.007)
nursery 0.012 (0.001) 0.358 (0.055) 0.003 (0.001) 0.062 (0.009) 0.026 (0.009) 0.063 (0.009)
pima 0.175 (0.009) 0.321 (0.069) 0.096 (0.030) 0.186 (0.010) 0.200 (0.020) 0.179 (0.015)
splice 0.062 (0.007) 0.131 (0.025) 0.040 (0.007) 0.065 (0.006) 0.052 (0.006) 0.069 (0.008)
vehicle 0.170 (0.008) 0.480 (0.078) 0.065 (0.029) 0.207 (0.015) 0.202 (0.040) 0.209 (0.023)
yeast 0.178 (0.012) 0.414 (0.078) 0.081 (0.021) 0.204 (0.009) 0.200 (0.013) 0.205 (0.013)

COPD 0.082 (0.009) 0.513 (0.107) 0.022 (0.010) 0.162 (0.038) 0.173 (0.032) 0.160 (0.042)
micronutrients 0.051 (0.002) 0.645 (0.067) 0.011 (0.003) 0.165 (0.017) 0.163 (0.027) 0.165 (0.019)
proton-beam 0.027 (0.001) 0.364 (0.052) 0.009 (0.003) 0.075 (0.010) 0.060 (0.014) 0.076 (0.011)

Table 2.3: Results (Brier scores) for Platt calibration via SVMs. The first three
columns correspond to the overall, positive and negative Brier scores (Equations
2.17, 2.18 and 2.19), respectively. Standard deviations over ten independent runs
for these are given within the parentheses. The last three columns show the same
for the undersampled/bagged approach.

overall and stratified Brier scores (see Section 2.3.2). We repeated this procedure

ten times to assess variance.

Figure 2.14 describes results over the datasets in Table 2.1 using three meth-

ods for estimating probabilities via SVMs: standard Platt, undersampled and

the undersampled/bagging methods proposed in Section 2.3.4. The left and right

sub-plots in Figure 2.14 correspond to the positive Brier score (BS+, defined in

Equation 2.18) and the overall Brier score (28) (Equation 2.17). Recall that

we want to minimize the Brier-score. Each × represents a specific run: lines

between these connect points generated from the same run, i.e., connect results

for the three different methods on the same dataset, using the same test set.

The black × are averages of the ten runs (lighter ×s are individual runs). The

black lines depict the average difference in performance between methods on a

given dataset (there are sixteen in all). These results are also summarized in

Table 2.3, which shows the overall, minority and majority Brier scores for each

dataset, and corresponding standard deviations of these scores over the ten runs.

The standard method of obtaining probabilities, Platt-calibrated SVMs, os-

tensibly slightly out-perform the undersampled strategies according to the overall

Brier score reported in the right sub-plot of Figure 2.14. But BS+ – the assess-

ment of performance on the minority instances – tells a rather different story.

Indeed, for half of the datasets the average BS+ achieved using the standard

method is greater than .5; in these cases, estimators calibrated using the stan-

dard procedure assigned, on average, a probability of < .5 to the proposition
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boosted DT (Platt) US & bagged

dataset BS (SD) BS+(SD) BS−(SD) BS (SD) BS+(SD) BS−(SD)

car 0.047 (0.014) 0.655 (0.175) 0.022 (0.013) 0.184 (0.032) 0.104 (0.081) 0.187 (0.033)
cmc 0.217 (0.013) 0.551 (0.034) 0.120 (0.022) 0.258 (0.018) 0.253 (0.018) 0.260 (0.023)
ecoli 0.093 (0.012) 0.570 (0.201) 0.036 (0.025) 0.176 (0.041) 0.176 (0.078) 0.176 (0.054)
german 0.258 (0.020) 0.506 (0.049) 0.151 (0.036) 0.229 (0.021) 0.227 (0.035) 0.230 (0.035)
glass 0.126 (0.052) 0.791 (0.113) 0.070 (0.061) 0.286 (0.031) 0.211 (0.042) 0.293 (0.036)
haberman 0.313 (0.046) 0.582 (0.174) 0.213 (0.104) 0.280 (0.050) 0.257 (0.059) 0.287 (0.078)
letter-rec. a 0.010 (0.000) 0.201 (0.019) 0.002 (0.000) 0.037 (0.006) 0.047 (0.027) 0.037 (0.007)
letter-rec. vowel 0.157 (0.001) 0.657 (0.015) 0.036 (0.004) 0.137 (0.008) 0.134 (0.010) 0.138 (0.010)
nursery 0.024 (0.002) 0.874 (0.109) 0.002 (0.002) 0.060 (0.007) 0.016 (0.008) 0.062 (0.007)
pima 0.252 (0.031) 0.419 (0.111) 0.161 (0.046) 0.196 (0.014) 0.199 (0.048) 0.194 (0.039)
splice 0.068 (0.014) 0.142 (0.053) 0.045 (0.014) 0.062 (0.005) 0.039 (0.005) 0.069 (0.007)
vehicle 0.211 (0.019) 0.493 (0.082) 0.117 (0.035) 0.213 (0.018) 0.204 (0.040) 0.216 (0.034)
yeast 0.240 (0.020) 0.467 (0.045) 0.148 (0.035) 0.216 (0.013) 0.219 (0.033) 0.214 (0.030)

COPD 0.119 (0.014) 0.624 (0.123) 0.049 (0.019) 0.160 (0.024) 0.209 (0.036) 0.153 (0.029)
micronutrients 0.078 (0.006) 0.812 (0.075) 0.027 (0.009) 0.135 (0.023) 0.215 (0.052) 0.129 (0.027)
proton-beam 0.050 (0.007) 0.701 (0.098) 0.015 (0.007) 0.123 (0.027) 0.098 (0.047) 0.125 (0.030)

Table 2.4: Boosted DT results. Note that the results for US & bagged differ
from those presented in Table 2.3 because these are averages over a different set of
randomized train/test splits.

that minority instances indeed belong to the minority class. Thus while overall

estimation is good, the probabilities estimated for the truly positive (minority)

instances are completely unreliable.

As the plot shows, undersampling prior to calibration sharply mitigates this

issue. The BS+ has a clear downward trend. In other words, undersampling

substantially increases the quality of the probability estimates for minority in-

stances (average decrease in the positive Brier-score of .315). Furthermore, while

affected, this undersampling does not greatly sacrifice the overall calibration (av-

erage increase in overall Brier-score of .055). Moreover, bagging undersampled

estimators fares even better; we see a similar decrease in the BS+ with a lower

hit in overall calibration. And, as expected, bagging reduces the variance of the

Brier-scores. This can also be seen by inspecting the thin grey lines in Figure

2.14 which represent individual runs; the range, for example, is tighter in the

bagged case, compared to undersampling.

The results for boosted decision trees (Table 2.4) tell a similar story. As

in Figure 2.14, the left and right sub-plots in Figure 2.15 correspond to the

positive and overall Brier scores, respectively. As in the case of SVMs, we observe

that the probability estimation method proposed for boosted decision trees in

(120) is well-calibrated, overall, but provides unreliable estimates for minority

instances. The undersampling and bagging methods that we have proposed

in Section 2.3.4 improve the probability estimates for minority instances while

maintaining good overall calibration. In this case, bagging estimators improves
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Figure 2.16: Fitted values from the linear mixed effects model. The predicted
value of 1-p̂ among the positive class for undersampled and bagged (red lines) and
non-undersampled (black lines) is shown over different levels of prevalence (left
panel), train set size (middle panel) and dimensionality (right panel). For each
graph the level of the other factors was set at the mean value across the experimental
datasets (e.g., when graphing the effect of prevalence, we set the train set size and
dimensionality to their respective mean values).

calibration in addition to reducing variance (compared to a single undersampled

estimator).

To explore whether dataset characteristics affect calibration performance

(w.r.t. BS+) we evaluated associations between the logit transformed 1-p̂ values,

the two techniques of interest (undersampled/bagged and standard SVM), and

three dataset characteristics: prevalence, training set size, and dimensionality.

We again used a linear mixed effects model for the logit-transformed 1-p̂ values

(the transformation was chosen to improve model fit) that allows for different

effects of undersampling and bagging by dataset and common effects of the char-

acteristics of interest across datasets (129). We plot the fitted lines for standard

Platt and undersampled/bagged, over normalized (to within [0,1]) dataset char-

acteristics in Figure 2.16. The results show that the improvement in calibration

performance from using the undersampled/bagged strategy is greater, compared

to standard Platt, when prevalence is low. This is a statistically significant find-

ing (p < 0.001), and is what we would expect due to Equation 2.21. Although

training set size and dimensionality did not reach statistical significance, the

fitted lines suggest that the former may still have an effect (i.e., a lot of training

data probably mitigates bias).

84



2.3 Probability Estimates for Imbalanced Data

0

5

10

15

20

0 .2 .4 .6 .8
0

5

10

15

20

0 .2 .4 .6 .8
0

5

10

15

20

0 .2 .4 .6 .8
0

5

10

15

20

0 .2 .4 .6 .8

0

5

10

15

20

0 .2 .4 .6 .8
0

5

10

15

20

0 .2 .4 .6 .8
0

5

10

15

20

0 .2 .4 .6 .8
0

5

10

15

20

0 .2 .4 .6 .8

pe
rc

en
t

P(yi = 1)

Figure 2.17: Empirical posterior distributions for four false negatives. The top
row corresponds to this distribution for the standard model, the bottom to under-
sampled/bagged. See text for discussion.

2.3.7 Exploiting the Bayesian Framework for Additional Uncer-

tainty

As discussed in Section 2.3.4, bagging probability estimators within the Bayesian

framework affords a few advantages over the simple (frequentist) averaging ap-

proach. One such advantage is the ability to take into account an additional

level of uncertainty, namely the empirical posterior distribution around the es-

timated p̂is. For example, the median of this estimate may be shy of .5, but the

95% credibility interval (or any other specified interval) may encompass .5. For

certain applications this may be useful information. More generally, the abil-

ity to marginalize over this posterior distribution could produce, for example,

informed estimates of the true cost.

Figure 2.17 shows the posterior distributions around four instances from the

COPD dataset (one per column) of minority instances assigned point estimates

< .5; these would, presumably, be classified (wrongly) as negatives. The top

row shows these posterior distributions using the standard (non-undersampled)

model, the bottom for the undersampled/bagged model we have proposed. In the

former case, the uncertainty is of no help: the estimates for each under-estimated

minority instance are well below .5. The posterior distributions obtained via the

bagged model, however, are potentially useful. Barring the left-most example, all
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of these include .5, and indeed their mass hovers around it. One could easily ex-

ploit this additional uncertainty to be more cautious when making classification

calls, or to obtain better estimates of expected costs.

2.4 Conclusions

We have provided a probabilistic interpretation of the effects class imbalance

has on discriminative models and probability estimators. For the former case,

we ran simulation experiments to corroborate this theory and demonstrated

the scenarios in which empirical error minimizing (linear) classifiers induced

over imbalanced datasets will likely induce a biased separator. Furthermore, we

theoretically quantified the conditions when weighted empirical cost methods for

mitigating the effects of imbalance, such as weighted-SVM and SMOTE,1 will

likely fail to improve performance.

It follows from the probabilistic interpretation of class imbalance developed

in this chapter that re-sampling methods, specifically undersampling, should be

applied in most imbalanced scenarios – in particular when prevalence is espe-

cially low or dimensionality is particularly high – as opposed to strategies that

modify the objective function maximized during classifier induction to penalize

false negatives more than false positives. Further, bagging should be used to

reduce the variance of this approach. We motivated this advice theoretically

and experimentally, and highlighted that this is in agreement with much of the

prior experimental work investigating methods for handling imbalance.

In a similar vein, we have identified an analogous problem with supervised

methods for estimating class probabilities in the case of imbalanced data: estima-

tors systemically provide unreliable probability estimates for instances belonging

to the minority class. We introduced a new metric, the stratified Brier score, to

quantify this problem. We discussed the theoretical underpinnings of the issue

and proposed a novel solution, namely inducing probability estimators over bal-

anced bootstrap samples of the training data. We empirically demonstrated that

1We re-iterate that while SMOTE technically affects the training class distributions, it
effectively behaves like a empirical cost weighted technique, due to its method for generating
synthetic minority instances: see Section 2.2.2.1.
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this simple approach mitigates the bias of the probability estimates, substantially

improving the quality of the probability estimates for the minority class, without

much sacrificing overall calibration. In short, better probability estimates can

be had for imbalanced data by undersampling and bagging (specifically, we can

improve calibration on minority instances a lot and suffer little for it in terms of

overall calibration). Finally, we demonstrated that additional uncertainty can

be exploited via a Bayesian approach by considering posterior distributions over

bagged probability estimates.
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3

Dual Supervision

In the preceding chapter, we addressed a problem common to real-world learning

scenarios and inherent to the citation screening task: learning under class imbal-

ance. We now turn our attention to making more efficient use of domain experts

via novel forms of supervision. Specifically, in this chapter we look to exploit

annotation beyond instance labels alone, namely in the form of dual supervision,

in which domain expert(s) provide explicit information regarding features and

their relationship to class labels. Exploiting such direct supervision is sometimes

more efficient than learning from instance labels alone, and can thus mitigate

the amount of labeling humans must provide, thereby reducing workload.

Consider the spam classification task alluded to in Chapter 1. In this task the

aim is classify emails as spam or not spam. Given the prevalence of the ‘Nigerian

prince scam’1 one knows that if the bigram ‘Nigerian prince’ appears in the text

of an email, it increases the likelihood that the email is spam. Words and n-grams

that correlate with specific classes are called labeled features (57). Intuitively,

it makes little sense to expend effort learning this information indirectly via

supervision at the instance level. Rather, we would like to allow the domain

expert to impart this knowledge directly to the model. This is the aim of dual

supervision, which refers to a family of methods that incorporate supervision

from annotations on features in addition to instances during classifier induction.

Dual supervision is particularly attractive in the citation screening case re-

viewed in Chapter 1, as reviewers often have a priori knowledge regarding

1See http://www.snopes.com/fraud/advancefee/nigeria.asp
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biomedical terms and their relationship to the clinical question at hand. For

example, systematic reviews of drug efficacy often exclude trials that were per-

formed on non-human animals (e.g., mice). Thus ‘mice’ and ‘mouse’ are good

candidates for negative features, i.e., features that correlate with study exclu-

sion. As a concrete example, in the case of the COPD systematic review (see

Table 2.2), the expert indicated that ‘allele’ and ‘COPD’ were positive whereas

‘mice’ and ‘cell lines’ were negative. We will show that exploiting this type of su-

pervision can indeed improve classifier performance, compared to learning from

instance labels alone.

Empirical results achieved using models that exploit dual supervision are

promising: methods that leverage labeled features consistently outperform those

that learn from instance labels alone (116, 151, 182). Moreover, there is evidence

that experts find labeling features less onerous than labeling instances. That is,

acquiring feature labels is cheaper, in terms of labeling time, than acquiring

instance labels (131, 144). Indeed, experts can often provide labeled features

essentially for ‘free’, in cases that they are known a priori: they need only

communicate them to the model (57).

In this chapter, we first review existing methods for learning under dual su-

pervision. We then formulate a Support Vector Machine (SVM) variant that

exploits labeled features: the Constrained Weight-space SVM (CW-SVM) (151).

In addition to exploiting binary labeled features, the CW-SVM allows domain

experts to provide ranked labeled features, and, more generally, to express arbi-

trary expected relationships between sets of features. We will later exploit the

dual supervision paradigm in the context of active learning (Chapters 4 and 5).

While all of the work presented in this thesis is a product of close collab-

oration with colleagues, I would like to especially highlight Dr. Kevin Small’s

contributions to the content comprising this chapter. An earlier version of this

chapter appeared in the 2011 Proceedings of the International Conference on

Machine Learning (ICML 2011).
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3.1 Related Work

In this section we will review emerging methods for dually supervised learning. In

Section 3.1.1 we discuss methods that extend the discriminative Support Vector

Machine (SVM) framework. We then turn our attention to generative dually

supervised approaches in Section 3.1.2.

3.1.1 Dually Supervised SVMs

One approach to dual supervision is the annotator rationale framework proposed

by Zaiden et al. (181), in which experts highlight the features that influenced

their categorization. This approach lends itself naturally to text classification,

wherein the expert can highlight n-grams – i.e., words or phrases – responsible for

their classification decision. For example, suppose the aim is to categorize movie

reviews as ‘positive’ or ‘negative’. Such sentiment analysis tasks are a natural

fit for dually supervised approaches, and we will use the movies task throughout

this thesis. Further suppose that the labeler is tasked to classify a scathing

review of a new film. In addition to designating this review as ‘negative’, the

annotator might highlight the sentence “This film was so terrible that I nearly

walked out” as the rationale for their decision. These rationales may also be

viewed as labeled features.1

Zaiden et al. (181) then exploit this information by constructing contrast

examples for each provided rationale. Contrast examples are pseudo-instances

that remove from labeled instances their associated rationales, i.e., the features

(words) present in the rationale are zeroed out. The intuition is that the induced

classifier ought to be less certain about these pseudo-instances than about the

original examples that contain the rationales. This is expressed via contrast

constraints, which specify that contrast examples should be some distance from

their source instances – i.e., those containing the rationales. This distance can

1Strictly speaking, rationales are not equivalent to labeled features; they are arbitrarily
long n-grams/sentences, rather than individual terms. In the quoted example, for instance,
only ‘terrible’ would likely qualify as a labeled feature. Nonetheless, they can be used as
(imprecise) labeled features.
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be thought of as a margin. Denoting the linear separator by w, the contrast

examples by vij (i.e., vij is instance xi with explanation j removed), we have:

∀i, j : yi(wxi − wvij) ≥ µ(1− ξij) (3.1)

where µ is the size of the margin and we have introduced new slack variables

ξij for each contrast constraint. Next we add a third term to the objective

function (Equation 1.2) reflecting our wish to satisfy these constraints. The C2

parameter encodes how much emphasis is to be placed on satisfying the contrast

constraints.

1

2
‖w‖2 + C1

m∑

i=1

ξi − C2

∑

i,j

(ξij) (3.2)

Zaidan et al.(181) demonstrated the efficacy of their approach with the

movies dataset (123, 124), which comprises reviews of movies manually des-

ignated as positive or negative. Users were asked to categorize a training set of

these reviews and provide their rationales by highlighting n-grams that explain

their decision. The annotator rationale approach just described outperformed

baseline SVM classification on the movies dataset. They also demonstrated that

removing the rationales from the documents prior to training induced a model

with poor accuracy, compared to an SVM induced over the documents with the

rationales intact. This suggests that the human provided rationales are indeed

important discriminative features.

Extending this work, Yessenalina et al.(178) proposed automatically gen-

erating rationales for the sentiment analysis case, achieving comparable per-

formance.1 Zaidan et al.(180) later re-cast the rationales approach within a

generative framework, though the intuition remains the same.

Arora et al.(9) considered applying the annotator rationale framework in

the context of structured features. Their approach exploits the part-of-speech

structure in text to disambiguate individual tokens. They give the example of

the following two statements: 1) “This camera has good features” and 2) “I did

1Note that this is similar to the standard labeled features approach; the best-performing
generation strategy was a Polarity Lexicon, which is essentially a list of labeled terms for
sentiment analysis.
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a good month’s worth of research before buying this camera”. Clearly, the token

good has different meanings in these contexts, and its presence in the second

statement might puzzle a classifier. Subject-object relationships provide a means

of disambiguating the token; Arora et al. (9) incorporated this information into

the document representation. They achieved promising results; incorporating

structural information outperforms the standard rationales approach (181).

An approach similar to rationales was proposed in earlier work by Sun et

al. (153). In particular, they developed the Explanation-Augmented SVM (EA-

SVM). In this approach, as in rationales, an explanation specifies the features

responsible for an instance’s classification. To bias the learner toward parameter

estimates that align with the provided explanations, Sun et al. (153) intro-

duce constraints that encode the preference for explained examples to be further

from the induced separator (more confidently classified) when they include their

explanatory features than when they do not, similar to the contrast examples

introduced above. They, too, demonstrate increased performance over baseline

SVM on a few tasks.

We have reviewed several discriminative SVM-based dually supervised meth-

ods that achieve better performance than their standard instance-label only

counterparts. In the next section we review generative approaches that incorpo-

rate dual supervision.

3.1.2 Generative Models for Dual Supervision

Several generative models for learning from dual supervision have been proposed.

All of them essentially share the same underlying strategy of introducing bias

into the model induction step to encourage parameter estimates that agree with

the provided labeled feature information.

Melville et al. (115) proposed the Pooling Multinomials model as a frame-

work for augmenting the standard näıve Bayes (NB) model with background

knowledge in the form of labeled terms. This is accomplished by maintaining

two separate conditional distribution tables; one for labeled features and another

for unlabeled features estimated over the training data. We will denote these

distributions by Pf and Pe, respectively.
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The key idea is then to define a combined conditional distribution over words

that combines Pf and Pe, that is, the a priori knowledge regarding the labeled

features and the empirical parameter estimates. To calculate these pooled con-

ditional probabilities P (wj |y′) for the NB classifier:

ŷ = arg max
y′∈Y

P (y′)
∏

j

P (wj |y′) (3.3)

where Y is the label set and wj is word j. Melville et al. (115) considered both

linear opinion pooling:

P (wj |y′) = λePe(wj |y′) + (1− λe)Pf (wj |y′) (3.4)

and logarithmic pooling:

P (wj |y′) = Z · Pe(wj |y′)λe · Pf (wj |y′)1−λe (3.5)

The extent to which we trust or believe in the labeled features is encoded with

the scalar parameter λe, which here is set using a sigmoid weighting scheme

based on the error of the corresponding model (the labeled features model or the

standard NB model) over the training set a la boosting.

Given a total vocabulary V, a set of unlabeled features U and a set of labeled

features P comprising positively and negatively labeled features, which we will

denote by α and β, respectively, the expert estimates are defined as:

P (w+|+) = P (w−|−) = [|α|+ |β|]−1 = |P|−1 (3.6)

P (w+|−) = P (w−|+) = [r(|α|+ |β|)]−1 = [r|P|]−1 (3.7)

and the estimates for weights associated with unlabeled terms in U are defined

to reflect the relative prevalence of positive/negative terms. Specifically:

P (wu|+) =
|β|(1− 1/r)

(|U|)(|P|) (3.8)
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P (wu|−) =
|α|(1− 1/r)

(|U|)(|P|) (3.9)

where r ≥ 1 is the polarity level, i.e., the relative increase in likelihood that a

document is positive if it contains p ∈ α. Together, the above formulas define

the Pf model that is pooled with the standard NB (Pe), as in Equations 3.4 and

3.5. Melville et al. achieve promising results with this approach, outperforming

baseline strategies.

In a similar vein, Settles (144) recently proposed a simple extension to the

näıve Bayes approach that assigns different priors to the conditional probabilities

P (wj |y′) for the labeled features. These encode the prior expectation regarding

wj ’s affinity for class y′. In particular, recall that one typically ‘smooths’ the

observation counts (this avoids zero-probability estimates for cases in which a

specific feature is never observed in a particular class). Typically a pseudo-count

of 1 is added to each feature wj class y′ conditional observation count (this is

known as Laplace smoothing). Settles (144) proposes adding 1+κ to the ob-

servation count of wj given y′ when wj has been labeled as being correlated

with y′, where κ is a scalar encoding feature polarity (κ = 0 for unlabeled fea-

tures). This simple approach has the advantage of lending itself naturally to the

multi-class case, whereas pooling multinomials does not. Furthermore, Settles

demonstrated that this approach often out-performs the pooling multinomials

model, particularly when further augmented with semi-supervised techniques

(144).

Elsewhere, Druck et al. (57) proposed using labeled features to constrain

the induced model’s predictions on unlabeled instances using the generalized

expectation (GE) framework (112), described briefly below. In short, they add

terms to their objective function that encode preferences for class labels on

unlabeled instances reflecting the labeled term distribution therein. This can be

operationalized by penalizing parameter estimates that diverge from our prior

expectations (e.g., with respect to KL-divergence).

A generalized expectation criteria (GEC) is a formalism for encoding arbi-

trary a priori expectations directly into model parameter estimation (112). GEC
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uses constraint functions f̃ that map the current expectation of a model to a

scalar, which encodes a penalty for violating some preference on the induced

distribution over labels. For example, this function may be a distance function

∆ between the reference (i.e., expert-provided) and estimated distributions, as

shown in Equation 3.10; KL-divergence is frequently used.1

Gf̃ (Eθ[f(x)]) = −∆(Eθ[f(x)], f̃) (3.10)

This scalar is then added to the parameter estimation objective function.

GE terms can be viewed as a prior that is an arbitrary function over ‘side-

information’ not directly available to the model. GEC may be used by them-

selves, or in conjunction with other terms. It can be shown (112) that GE

is a general formulation which subsumes several popular parameter estimation

methods as special cases (e.g., maximum likelihood).

GEC thus provides a means of incorporating a priori knowledge into param-

eter estimation. Using this machinery, Druck et al. (57) used GEC to exploit

labeled features. In particular, they used GEC in conjunction with a discrimi-

native probabilistic model parameterized by θ for text classification (they used

a Markov random field, but any probabilistic model would do). Suppose, as

before, that the expert provides sets of labeled terms P. Then Druck et al. (57)

add the constraint defined in Equation 3.11 for each f ∈ P. Here p̂f denotes the

reference distribution for feature f . In the GE framework, experts specify the

expected distribution of important terms over labels. For example, a user may

expect that 80% of news articles containing the token ‘basketball’ will be sports

rather than world news articles. Note that this is a finer-grained supervision

than is provided by binary feature labels, and thus may prove too onerous for

experts. To mitigate this problem, Druck et al. (57) provide a simple method

of mapping binary labels to coarse distributions.2 An estimate of the model

parameters θ is then penalized if its predictions over unlabeled examples deviate

1To remain consistent with (57), here we define the objective function to be negative, thus
assuming it will be maximized.

2Note that pooling multinomials performs a similar mapping of binary labels to conditional
distributions.
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from this expected distribution. This is formalized by the following objective

function, where xf > 0 implies feature f is present in x:

−
∑

f∈P∪N
D(p̂θ(y|xf > 0)||p̃θ(y|xf > 0)−

∑

j

θj
2σ2

(3.11)

Where p̂θ(y|xf > 0) is the expert provided expected reference class distribution

w.r.t. feature f and p̃θ is the probabilistic model parameterized by θ that pre-

dicts a class for x. There are |P| GE terms in the objective function, one per

labeled feature; these are defined to be the Kullback–Leibler distance between

the reference and empirical (i.e., distribution of predictions with the currently

induced model) class distributions for term f . Thus the model is penalized for

choosing parameters that define a model that disagrees with the expert’s prior

expectations. The second term is a regularizer (specifically a non-informative

Gaussian prior) that encourages the model to spread weights out over the pa-

rameters θ. This function is then optimized directly. Note that this approach

does not consider any instance labels; a parameter vector is learned exclusively

over labeled features.

We will show that the method we propose in the following section, the

Constrained Weight-space SVM (CW-SVM), outperforms the methods reviewed

above. Moreover, neither the generative nor discriminative models that have

been proposed explicitly support ranked labeled features, or expected relation-

ships between features. That is, most methods assume that experts provide

binary labels on features that indicate if they are thought to be correlated with

one class (or not). The GEC approach, meanwhile, allows for fine-grained spec-

ification of condition probability expectations of classes given features. In our

view a middle-ground is more natural: experts may wish to rank features in

terms of their correlations with a given class. The CW-SVM provides a means

of exploiting such information.

3.2 The Constrained Weight Space SVM

In this section we present our novel formulation for exploiting expert-provided

labeled features during classifier induction. Specifically, we extend the support
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vector machine (SVM) model (45) by adding additional constraints to reflect this

domain knowledge. Our method is unique compared to the existing approaches

to learning with labeled features (reviewed above) in two ways. First, it provides

a natural mechanism for directly encoding expert beliefs in the form of weight

constraints. Second, our method is able to exploit ranked labeled features; e.g.,

in the case of sentiment analysis, great and good are both indicative of a positive

movie review, the former is more indicative of this than the latter. The proton

beam systematic review (157) provides another example: in this case the expert

indicated that hadrontherapy is more indicative of a relevant abstract than proton

ion, and conversely that electron beam is more indicative of an irrelevant abstract

than photon beam. Such a ranking is natural in many domains, and as we shall

see, exploiting this ranking can improve classifier performance over strategies

that do not use rankings.

The remainder of this section is organized as follows. We first briefly review

the standard C-SVM, which we build upon in Section 3.2.2 to realize the first

two formulations of our proposed constrained weight space SVM (CW-SVM):

the first supports only polar (binary) pairwise preference constraints, while the

second allows for ranking of labeled features. We give a general formulation of

the CW-SVM, of which the two aforementioned variants are special cases. We

conclude the presentation of the CW-SVM, providing a concrete instantiation

of the general case that allows an expert to encode knowledge regarding sets of

labeled features and their polarity relative to one another. We report experi-

mental results over a sentiment analysis task and two systematic review datasets

from our motivating task in Section 3.2.3 – providing an empirical comparison

with existing methods (just reviewed) that exploit dual supervision. Finally, we

close the chapter with concluding remarks in Section 3.3.

3.2.1 Preliminaries

Recall that we are focused on learning binary linear classifiers of the form f(x) =

sgn(w ·x + b) where x ∈ {0, 1}d is a d-dimensional feature vector representation

of the item being classified, w ∈ Rd is a d-dimensional weight vector, and b ∈ R

is a learned threshold (i.e., bias element). Following conventional notation, let
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y ∈ {−1, 1} denote the label associated with an item. Given a set of m training

instances {(xi, yi)}mi=1, the goal is to inductively learn classifier parameters {w, b}

that generalize well to unseen data.

We build upon the C parameterization for soft margin SVM classifiers (45).

Defining ξ ∈ [0,∞)m as a slack variable vector to minimize instance-wise hinge

loss and C as a tradeoff parameter between misclassification error and regular-

ization, recall that the C-SVM (45) formulation is given by:

argmin
w,b,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi (3.12)

s.t. yi (w · xi + b) ≥ 1− ξi ∀i = 1 . . .m (3.13)

ξi ≥ 0 ∀i = 1 . . .m (3.14)

3.2.2 Constraining the SVM Weight Space

As discussed above, a domain expert may know that particular feature values

are correlated with one class or another. In the case of inducing a weight vec-

tor to discern positive from negative reviews, for example, we know a priori

that the word terrible ought to have a lower weight than the word terrific (i.e.,

wterrific > wterrible). We augment C-SVMs to exploit such information by bi-

asing the algorithm toward weight vectors in the hypothesis space that satisfy

these constraints. More specifically, our method directly encodes expert knowl-

edge regarding features through the definition of weight constraint sets, p ∈ P,

each comprising a set of binary relationships {α, β}α,β∈p that encode beliefs re-

garding the relative weight values (e.g., wα ≥ wβ).

Generally, we call this model the constrained weight space SVM (CW-SVM).

In the remainder of this section, we describe a sequence of CW-SVM instanti-

ations. We begin with the relatively straightforward but powerful approach of

allowing the expert to specify a single set of independent pairwise constraints

(PWCs), as this is the simplest case. We then proceed by generalizing the CW-

SVM framework, allowing for the incorporation of a specific set of function-based

constraints (FBCs). It should be noted that in all of the proposed variants only

a small number of features need to be labeled to achieve performance gains over

baseline strategies (as will be seen in the empirical analysis), leaving the remain-
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3.2 The Constrained Weight Space SVM

ing weights associated with unlabeled features unconstrained but influenced by

their value in relation to the explicitly constrained weights.

3.2.2.1 Pairwise Parameter Constraints

The simplest instance of explicit rank feature-weight constraints are pairwise

constraints (PWCs).1 In this case, we assume only that the domain expert

has specified pairs {α, β} of labeled features such that the weight associated

with α should have greater value than the weight associated with β. Once

such a pair is specified, a scaling parameter ρα,β is associated with each PWC

such that the distance between the two weights (e.g., wα−wβ) is maximized in

coordination with the existing C-SVM parameterization. Considering Figure 3.1,

an example PWC is that wterrific > wlively. Note that while the “ordering”
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Figure 3.1: Weight bias induced by pairwise constraints.

of the weights is specified, the actual distance between weights, ρterrific,lively

is learned exclusively from the data. We now describe two specific CW-SVM

formulations that exclusively utilize PWCs; feature polarity and ranked features.

1We cover the simple feature-polarity case in the next subsection, but begin here with rank
constraints.
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3.2.2.2 Feature Polarity

In the ‘feature polarity’ setting, we assume that the expert provides a set of

positive labeled terms α and a set of negative labeled terms β. In this case, we

generate |α||β| constraints and reward hypotheses where wα > wβ,1 giving rise

to the optimization:

argmin
w,b,ξ,ρ

1

2
‖w‖2 + C1

m∑

i=1

ξi − C2

∑

α,β

ρα,β (3.15)

s.t. yi (w · xi + b) ≥ 1− ξi ∀i = 1 . . .m

wα −wβ ≥ ρα,β ∀α, β (3.16)

τ− ≤ wα,wβ ≤ τ+ ∀α, β

ξi ≥ 0 ∀i = 1 . . .m

Where τ ‘boxes’ the weight-space; we set these values by first fitting a standard

SVM on the data and using the lower and upper bounds of the induced w as τ−

and τ+, respectively. These ‘box-constraints’ prevent the optimization procedure

from selecting weight-vectors with arbitrarily large ρ’s (i.e., very large or small

values corresponding to the terms for certain labeled features), which would

be undesirable. It is true that the first term in the objective penalizes such

behavior by looking to minimize w. However, the amount of emphasis placed

on this versus maximizing the ρ’s will depend on the trade-offs encoded by the

C terms. In our experience if one uses grid-search to set the C’s, the problem

of pushing the ρ’s out ever further remains, and hence our inclusion of the

box-constraints. Admittedly, however, this box-constraint solution is inelegant.

An alternative formulation may constrain the ρ’s to be positive, precluding the

possibility that feature constraints are violated. This may mitigate the problem

of very large ρ’s, and is a direction we plan on exploring. In any case, the main

point is that here we augment the C-SVM optimization problem by encoding

a preference to separate the weights of features with known polarity, using the

defined PWCs of Equation 3.16 and rewarding this separation in the objective

function of Equation 3.15.

1Note that that this can be equivalently accomplished with PWCs that constrain positive
(negative) feature weights to be greater (less) than the decision threshold.
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3.2.2.3 Ranked Features

In the preceding section we described a method for incorporating labeled fea-

tures with respect only to class polarity, which is similar to previous work

on learning with labeled features (see Section 3.1). We now introduce ma-

chinery to exploit ranked labeled features. For example, while “terrific” and

“lively” may be associated with a positive movie review and “muddy” and “ter-

rible” with a negative review, an expert may want to specify that they believe

wterrific ≥ wlively ≥ wmuddy ≥ wterrible. It is straightforward to derive a PWC

formalism to include ranked features. Specifically, if we define α � β to indicate

that wα ≥ wβ such that the rankings for α and β are adjacent, the following

optimization problem captures ranked feature information:

argmin
w,b,ξ,ρ

1

2
‖w‖2 + C1

m∑

i=1

ξi − C2

∑

α,β:α�β
ρα,β (3.17)

s.t. yi (w · xi + b) ≥ 1− ξi ∀i = 1 . . .m

wα −wβ ≥ ρα,β ∀α, β : α � β (3.18)

τ− ≤ wα,wβ ≤ τ+ ∀α, β

ξi ≥ 0 ∀i = 1 . . .m

Note that the “most weakly” positive labeled features are considered adjacent to

the “most weakly” negative labeled features; in our above example wlively would

be considered adjacent to wmuddy. We augment the C-SVM optimization prob-

lem in order to encourage separation between features with adjacent rankings

using the pairwise weight constraints of Equation 3.18 and rewarding separation

in the objective function of Equation 3.17. Note that the feature polarity for-

mulation described in the previous section is a special case of ranked features

where there are only two possible rankings.

3.2.2.4 CW-SVM: A General Formulation

As developed thus far, PWC formulations reward correct parameter “orderings”

(with respect to a priori expert beliefs), but do not provide a means for encod-

ing beliefs regarding the relative distances between the provided sets of ranked
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weights. For some tasks experts may wish to express an intuition such as “The

terms horrible and awful are exponentially more indicative that a movie review

is negative than are the terms convoluted and long.” We now present a general

formulation of the CW-SVM that allows the expert to formally express his or

her domain knowledge.

First, we define ranked feature sets where rp(x) denotes the expert defined

rank associated with each labeled feature such that rp(x) > 0 indicates a ranking

associated with positive class labels and rp(x) < 0 is associated with negative

class labels. We encode the rankings numerically as follows: the terms belonging

to the most positive set map to rank 1; terms in the second most positive set

to rank 2, etc. The same holds for negatively ranked terms, only the values are

negated to encode polarity. In our running example from Figure 3.1 rp(lively) =

2, rp(terrific) = 1, rp(muddy) = −1 and rp(terrible) = −2.

Next we define a function gp over ranks r(α) and r(β) to provide a scalar

expressing the expected difference in weight values of their sets’ respective mem-

bers. For example, consider Figure 3.2, where we are shaping both the positive

and negative ranked features with separate exponential functions.
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Figure 3.2: Weight space bias induced by function-based constraints

In this case, all of the weights associated with positively (negatively) ranked

features are shaped along an exponential function where the distance between

parameters is scaled by ρ+ and ρ−, respectively. In general, there can be many

such functions for different sets of features, although this will likely be a small
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number of functional families in practice (e.g., linear or exponential). Formally,

we have the following general optimization problem:

argmin
w,b,ξ,ρ

1

2
‖w‖2 + C1

m∑

i=1

ξi −
∑

c∈C
Cp · ρp (3.19)

s.t. yi (w · xi + b) ≥ 1− ξi ∀i = 1 . . .m

wα −wβ ≥ ρp · gp(r(α), r(β))

∀α, β, p : p ∈ P;α, β ∈ p (3.20)

τ− ≤ wα,wβ ≤ τ+ ∀α, β

ξi ≥ 0 ∀i = 1 . . .m

Provided with the feature constraint sets P, the optimization procedure bal-

ances the minimization of the magnitude of w and the minimization of training

error (as in C-SVM), while attempting to maximize the relative influence the

constraint information through the scaling vector ρ ∈ R|P| (the influence of

these terms is influenced through their respective C parameters). Thus, while

the expert-defined gp determines the shape of the constraining function, the scale

of the relative separation is still learned from data. The influence of the scaling

parameters associated with each p is determined by the parameter Cp (which

is set using expert knowledge or cross-validation over the training data). Once

the quadratic program (QP) is specified, existing QP packages can be used to

solve the optimization problem.1 Using this formulation, an expert can define

several sets of parameter constraints and functions that define beliefs about their

relationships. In the next section, we describe a particular instantiation of the

CW-SVM that includes function-based constraints (FBC).

3.2.2.5 Function-based Constraints

The PWC formulations of Section 3.2.2.1 are specific instantiations of the gen-

eral CW-SVM in which there exists an independent function gp(r(α), r(β)) = 1

for each pairwise constraint (i.e., there is one parameter constraint in each pa-

rameter constraint set). However, there are situations where the expert may

wish to provide the classifier information such as “wterrific is much more posi-

1We use CVXOPT (48).
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tive than wgood while wgood is slightly more positive than wlively.” This is shown

in Figure 3.2, where the aforementioned weights are biased to fit along the func-

tion f(w) = e−κ·r(w) (where κ is a constant). In this case, we would define

g(r(α), r(β)) = e−κ·r(α) − e−κ·r(β) and constrain all of the positive ranked pa-

rameters to the shape of this function (therefore learning the scaling parameter

ρ associated with a specified g). Here the expert would group these parameter

constraints into a parameter constraint set p and specify a function to express

relationships between pairs of labeled features in this set. By allowing the ex-

pert to specify this additional information, and thus inducing a stronger bias on

the parameter space than PWC, we can further reduce the labeled data require-

ments, as demonstrated by our empirical results.

We now introduce a particular instantiation of CW-SVM where all of the

positively labeled features are used to generate one parameter constraint set

(which are related to each other by a single shaping function) and all of the

negatively labeled features are used to generate a second parameter constraint

set (which are related to each other by a second single shaping function). Finally,

we define PWC along the polarity border to enforce a notion of margin among

the labeled features. This results in the following optimization problem:
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argmin
w,b,ξ,ρ

1

2
‖w‖2 + C1

m∑

i=1

ξi − C2

∑

max(r(α))
min(r(β))

ρα,β

−C3 · ρ1 − C4 · ρ2 (3.21)

s.t. yi (w · xi + b) ≥ 1− ξi ∀i = 1 . . .m

wα −wβ ≥ ρα,β

∀α, β : max(r(α)),min(r(β)) (3.22)

wα −wβ ≥ ρ1 · g1(r(α), r(β))

∀α, β : α � β, r(α) > 0, r(β) > 0 (3.23)

wβ −wα ≥ ρ2 · g2(r(β), r(α))

∀α, β : α � β, r(α) < 0, r(β) < 0 (3.24)

τ− ≤ wα,wβ ≤ τ+ ∀α, β

ξi ≥ 0 ∀i = 1, . . . ,m

This form is general because there are infinitely many possible shaping func-

tions which can be used to define FBCs. However, realistically there only a small

number of functional families are useful in practice (e.g., linear, exponential, sig-

moidal, etc.) – making FBC formulations feasible for expert specification in the

common cases.

3.2.3 Experimental Results

For our experimental evaluation, we use datasets from our motivating task of

biomedical citation screening (see Chapter 1). We note that, as in the preceding

chapter, we use level-1 labels as the target concept here. We also conduct exper-

iments with a movie reviews dataset (123). We compare the CW-SVM against

appropriate baselines (i.e., without labeled features) and existing strategies that

exploit labeled features, described next. We note that, to our knowledge, this

is also the first empirical comparison of these methods for learning with labeled

features.
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3.2.3.1 Methods

We summarize below the methods to which we compare the CW-SVM. These

methods were reviewed at length in Section 3.1; here we provide the main intu-

ition and implementation details.

Annotator rationales. Zaidan et al. (181) proposed the annotator ratio-

nale framework as a means of incorporating annotator ‘explanations’ into the

training algorithm. This is done by having the expert mark the text (features)

that most influenced their labeling decision. To then exploit provided rationales,

several contrast examples are generated for each instance, which intuitively are

examples assumed to be negative due to the forced absence of a particular ratio-

nale. The SVM algorithm is correspondingly modified with contrast constraints

to encourage the model to find weights that are consistent with the expert-

provided rationales. For more details, see Section 3.1. We do not have ratio-

nales in the case of systematic reviews, because our approach requires a small

set of labeled terms as opposed to rationales for each instance (which doctors

are not anxious to supply when conducting reviews). We therefore do not com-

pare against the rationales approach for the systematic reviews datasets. We do,

however, compare the CW-SVM to the rationales approach over the sentiment

analysis task, using the methodology described in (181).

Pooling multinomials. As described above, the pooling multinomials

model (116) extends the standard näıve Bayes model for text classification. In

particular, they compute posterior estimates of a document belonging to a given

class using both the standard näıve Bayes model and a generative ‘background’

model that incorporates labeled features (terms), which they refer to as the

lexical model. The basic strategy in deriving their lexical model is to assign

probabilities to the labeled terms reflecting their polarity, or class association.

For technical details of their lexical model, see (116).

The estimates of these two models (multinomials) are then linearly com-

bined with weights reflecting the accuracy of the respective models (as esti-

mated via cross-validation over the training data). In particular, each model

m (näıve Bayes, lexical) has an associated weight αm computed as follows:

αm = log 1−errm
errm

. Because of our emphasis on recall in the citation screening
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scenario (and evaluation via F2), we modify their approach slightly for these

datasets such that the two models are combined according a weighted error;

in particular, we use errm = fprm+βfnrm
1+β , where fprm and fnrm are the false

positive and false negative rates, respectively.1 This modification improved the

performance of their method on the screening task datasets, compared to their

proposed method, which effectively optimizes for accuracy (we did not incorpo-

rate this change for movies, wherein accuracy is the metric of interest).

GEC. We used the Mallet(111) implementation of the GEC framework de-

scribed elsewhere (57) and reviewed in Section 3.1.

CW-SVM. For the CW-SVM, we compared results using the following vari-

ants:

• Polarity - The PWC formalism wherein weights associated with positively

labeled terms are constrained to be greater than all weights associated with

negatively labeled terms (Section 3.2.2.2).

• Ranked - The PWC formalism in which adjacently ranked features cor-

respond to associated constraints in weight space (Section 3.2.2.3).

• FBCs - The formulation of Section 3.2.2.5 where parameters are con-

strained to fit along a specified function. We consider Linear {g1(r(α), r(β)) =

r(α)−r(β), g2(r(β), r(α)) = r(β)−r(α)} and Exponential {g1(r(α), r(β)) =

e−κ·r(α) − e−κ·r(β), g2(r(β), r(α)) = e−κ·r(β) − e−κ·r(α)} cases.

3.2.3.2 Citation Screening Results

For the citation screening datasets (see Table 2.2), we use a bag-of-words (BOW)

representation, ignoring word capitalization and removing words found in the

PubMed stop-list. During each experiment, we perform five-fold cross-validation,

setting C1 for each fold via two-fold cross-validation on the available training data

for that fold (covering the search space C1 = 2{−10,...,3}). Once C1 is determined

for the baseline SVM, we use the resulting w to inform τ{+,−} and perform a

grid (or cube) search over C2, C3, C4, as appropriate.

1We set β to 10, reflecting intuition.
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Furthermore, due to the class imbalance in the data, accuracy is not a useful

metric for comparing models. Here we instead use a weighted harmonic mean

which values recall more than precision, i.e., F2 = 5·precision·recall
4·precision+recall . We have

defined recall (also known as sensitivity)) and precision in Equations 2.1 and

2.3).1 In reality we would increase the weight on recall in the citation screening

scenario (although this would depend on the specific project), but we wanted to

assess the performance of the CW-SVM with respect to less extreme asymmetry

in costs. We note that in Chapter 4 we will introduce a metric specific to the

citation screening case and a general method for eliciting the relative importance

of sensitivity versus specificity from domain experts.

We use two of the systematic review datasets introduced in the preceding

chapter (Table 2.2), namely proton beam (157) and COPD (32). The former

comprises 4751 documents – 243 of which were screened in, i.e., labeled as rel-

evant. Thus the minority class here comprises 243 documents. A clinician in-

volved in the review provided seventy positive terms divided into six ranked term

classes and eleven negative terms divided into three ranked term classes. The

cost associated with term label acquisition is not reflected in the plots, in part

because we believe would be quite low in this case as the reviewer knows these

terms a priori.

We ran experiments as follows. We provided each learner access to the same

datasets comprising an increasing number of the relevant citations. In partic-

ular, we included {50, 100, 150, 200, 243} relevant citations in the five training

datasets, respectively. For each of these training datasets, we ran five-fold cross-

validation to assess classifier performances given the corresponding amount of

training data.As per our discussions in Chapter 2, we undersample the majority

instances such that we learn over a balanced dataset for all models.2. We report

the average performances over this cross-validation for each amount of training

data in Figure 3.3.

Not surprisingly (in our view) näıve Bayes fares poorly compared to the other

1We note that we use precision in place of specificity in this variant of F2, in contrast to
experiments in Chapter 2. The general trends using these two variants will be comparable: as
specificity increases, so too precision.

2In order not to confound the analysis, we do not bag classifiers here.
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Figure 3.3: Empirical Results on the proton beam review

models. However, the pooling multinomials model (116) does relatively well,

outperforming the standard SVM model, at least at the first three evaluation

points. This demonstrates the utility of labeled features. All three of the CW-

SVM models outperform the other strategies, particularly at the start of the

learning curve (i.e., when fewer labeled instances are available). This makes

sense, as biasing the learner with (prior) domain knowledge in the absence of

sufficient training data seems likely to improve performance.

The second citation screening dataset that we use here is COPD, which com-

prises 1606 documents, 196 of which were found to be relevant. In this case,

we have fifteen positive terms divided into three ranked term classes and seven

negative terms divided into two ranked classes. For COPD, we conducted five

experiments in which we learn a classifier from {40, 80, 120, 160, 196} relevant ex-

amples and 1410 irrelevant documents. The experimental procedure is otherwise

as described above. The results for this experiment are shown in Figure 3.4.

Näıve Bayes again performs poorly on the COPD dataset. Interestingly, the

pooling multinomials does not perform well here, as it did above. It is not clear

to us why this is the case, though it may be attributable to the comparatively

small number of labeled features for this dataset. We again observe that the
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Figure 3.4: Empirical Results on the COPD review dataset.

CW-SVM outperforms all other models, particularly at the start of the learning

curve – i.e., with fewer labels.

3.2.3.3 Sentiment Analysis Results

We now present results over the movies dataset (123), in which the task is to

classify movie reviews as positive or negative. There are 2000 movie reviews in

this corpus, 1000 of which are positive and 1000 of which are negative. For this

dataset, we have rationales provided by Zaiden et al. (181), and we therefore

compare against the annotator’s rationales method described above. We follow

the data encoding, training and testing procedures described in (181). To derive

labeled features, we used an information-gain metric to rank terms with respect

to their discriminative power using the instance labels to effectively simulate an

oracle, as has been done elsewhere (57). Recall that the CW-SVM can exploit

feature rankings. We thus created three classes of each polarity: thirty positive

terms total (ten per positive rank) and 45 negative terms (fifteen per negative

rank). We set C1, . . . , C4 as described above.

Both standard näıve Bayes and linear pooling perform poorly in this case.1

1Our linear pooling results agree with those of (116), though our implementation of standard
näıve Bayes outperforms theirs, for reasons obscure to us.
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Figure 3.5: Empirical Results on Movies Dataset

All of the other strategies that exploit labeled features (our CW-SVM and the

rationales approach) outperform the baseline SVM induced over instance labels

alone, again highlighting the utility of labeled features. The CW-SVM, however,

dominates the already strong rationales approach.

3.3 Conclusions

We have presented the CW-SVM, a novel, flexible method for directly incorpo-

rating labeled features in classifier induction. Our method requires only a small

number of labeled features to outperform the baseline SVM. We presented strong

empirical results, demonstrating that the CW-SVM outperforms existing meth-

ods that learn with labeled feature information over two biomedical abstract

screening datasets and a sentiment analysis task.

Unlike existing dually supervised methods, which exploit only feature-class

associations, the CW-SVM allows for the direct incorporation of ranked labeled

features, allowing domain experts to impart knowledge regarding groupings of

terms with varying degrees of polarity. As we saw in the experimental results,

such rankings can boost classifier performance. Finally, should the expert have

prior intuition regarding the relative polarities of sets of their labeled terms (e.g.,
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3. DUAL SUPERVISION

weakly versus strongly positive), our framework provides a way of encoding this

information.

We will later (Chapter 5) return to the paradigm of dual supervision in the

context of active learning. But first we introduce active learning and address

outstanding issues therein in the following chapter.
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Real World Active Learning

In the preceding chapter, we focused on one mode of expert/model interaction

that looks to improve model performance: labeled features. We now turn our

attention to iterative, interactive learning. Specifically, in this chapter we ex-

ploit the active learning (AL) protocol (143) to induce better models with fewer

labels, i.e., less human effort. In Chapter 5 we will present a method for jointly

exploiting the dual supervision and active learning frameworks.

The trouble with existing active learning methods, which we will next review,

is that they make a number of unrealistic assumptions. Specifically, they assume

a single, infallible oracle will provide labels at a fixed cost. But in real-world

scenarios, and indeed in citation screening for systematic reviews, it is often the

case that multiple labelers participate in a given task, each with different abilities

and costs. Moreover, it is not generally true that instances take an equal amount

of time to label: difficult instances, for example, are likely to take more time –

and hence cost more money – compared to instances that obviously belong to

a given class. The main contributions of this chapter are novel active learning

methods that address these problems, thus squeezing better performance out of

fewer labels. Portions of this chapter appeared in the Proceedings of the 2011

Siam Data Mining conference (SDM 2011) (167) and in the Proceedings of the

2010 International conference on Health Informatics (IHI 2010) (163).
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4.1 Background and Related Work

Active learning strategies exploit an expert ‘in-the-loop’ during classifier train-

ing. The aim is to make the induction process more efficient by allowing the

learner to select its training data cleverly, rather than at random. Active learn-

ing has empirically proven quite successful in terms of expediting the training

process (107, 145, 150). In this work we focus on pool-based active learning (100),

in which the learner has access to a large unlabeled set (or pool) of instances U

and a small labeled set of instances L; the aim is to pick instructive examples

from U for the expert to label. The pool-based scenario agrees with typical real-

world cases: unlabeled data is often abundant and easily accessible (consider

the Internet, for example), but tasking humans to annotate this data is costly.

Active learning is particularly attractive in the citation screening case, because

a new classifier must be induced for each project, as the target concept (i.e., the

inclusion criteria) is different for each review.

4.1.1 Active Learning Methods

Aside from the pool-based framework, two other major variants of active learn-

ing have been studied at length, which we briefly review for completeness. In

stream-based active learning (10, 47, 147), the learner is presented with instances

sequentially and for each must decide whether or not to purchase its label. In

contrast to pool-based active learning, it is usually assumed that the learner can

consider each instance sequentially and only once. Aside from this crucial dif-

ference, however, the approaches used to decide which instances in U should be

labeled in the pool-based scenario can also be used to decide for which instances

a label should be acquired in the sequential or stream-based case.

Query-based learning strategies (5, 6, 7) allow the learner to create instances

on its own and then ask the expert to which classes they would belong. The

biggest drawback to such membership query learning strategies is the require-

ment that the learner generate coherent synthetic instances. Consider, for ex-

ample, text classification. For a query-based strategy, the learner would need

to generate documents that could reasonably be said to belong to a particular
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iterate until the budget is spent

learner

unlabeled 
data U

expert

labeled 
data L

predictive 
model

Figure 4.1: The pool-based active learning paradigm. The supervision in this case
is iterative and interactive: at each step in the learning process, the model requests
the expert to label instances whose annotation will likely lead to better predictive
performance.

class. However, generating such coherent text is far beyond the capabilities of

modern natural language processing (NLP) techniques. The requirement that

humans classify synthetic instances is often problematic in practice, even outside

of text classification (19).

Figure 4.1 describes the pool-based active learning process. In contrast to

the standard supervised learning framework (Figure 1.3) in which the training

data is selected at random up front, active learning is an iterative process. At

each step in active learning, the model selects a small sample of instances from

the unlabeled pool U for the human expert to label. The idea is that by select-

ing these instances intelligently, rather than at random, a better model can be

induced with fewer labels. The instance selection strategy is a function of the

current model. Generally, we can define a query function Q that selects from

the remaining unlabeled instances U an instance x∗ likely to be informative to

the learner. Active learning methods differ with respect to their Q function.

Pool-based AL methods (i.e., specifications of Q) typically fall into one of three

families of strategies: uncertainty sampling, Query-by-Committee (QBC) and

expectations-based models.

Of these, uncertainty sampling (100) is the most widely used. The idea is sim-
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Figure 4.2: Simple Active learning with an SVM (158). Assume only red points
are labeled, and that the remainder constitute U. The drawn line shows what
might be induced as the decision surface, given the (red) points labeled thus far.
The two highlighted O ’s are nearest this surface, and are thus attractive candidates
for labeling. This is intuitively agreeable here, as labeling these points will push
the surface nearer the X’s. One can see this will result in a better classifier for
this data, because the shown hyperplane misclassifies one of two highlighted O ’s;
labeling either of the highlighted candidates would remedy this.

ple: the model selects for labeling those instances about whose class membership

it is least certain. Quantifying uncertainty is straight-forward for probabilistic

models: in such cases the model is least certain about the point(s) with the

lowest predicted likelihood of belonging to any of the classes y ∈ Y . Formally,

x∗ ← argmin
x∈U

max
y∈Y

P (y|x) (4.1)

Thus any model that explicitly estimates class membership probabilities – e.g.,

näıve Bayes, as in (90) – can immediately be used for uncertainty sampling.

In the case of discriminative models, uncertainty can be quantified via cal-

ibration methods (as were discussed in Chapter 2) or heuristically, contingent

on the model. Perhaps the most popular flavor of uncertainty sampling is Tong

and Koller’s Simple (158), which uses Support Vector Machines (SVMs) (45) as

the underlying learner. The intuition is to interpret the distance of an instance

from the discriminating hyperplane as a proxy for confidence in its label (recall

that these are the fi values we used for calibration in Chapter 2). The querying

strategy, then, is simply to pick the instance nearest the current hyperplane.

Figure 4.2 illustrates this approach.

In recent work on uncertainty sampling methods, Dredze et al. (55) pro-
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posed confidence-weighted active learning. This strategy leverages confidence-

weighted linear classifiers (56) to attain a more fine-grained measure of uncer-

tainty, compared to the aforementioned distance to the decision surface. In

particular, confidence-weighted learners model each coefficient in a linear model

as a normal distribution with an associated point estimate and variance. The

uncertainty is then estimated via the expected distance to the decision bound-

ary, which takes into account the variances around each wj . This can be viewed

as taking weighted draws from the space of ‘good’ hypotheses and aggregat-

ing their estimates of uncertainty with respect to each instance. The authors

demonstrated that this approach outperformed standard uncertainty sampling

strategies on some benchmark datasets.

Query-by-Committee (QBC) style algorithms constitute another family of

active learning strategies (66, 147). These methods construct an ensemble of

classifiers induced over L and request labels for instances in U about whose class

said ensemble members most disagree. This strategy is theoretically motivated

by computational learning theory (147): each committee member may be viewed

as a hypothesis consistent with the instances comprising L. Acquiring a label

for an instance about which two or more hypotheses disagree can be seen, then,

as a means of explicitly shrinking the version-space, i.e., the space of hypotheses

consistent with L: at least one of the models is incorrect, and can hence be

removed from this space once the true label is revealed.

Many different variants of QBC have been proposed. For example, Mamit-

suka experimented with boosting- and bagging-based methods (108). In boosting

(65) one creates a set of classifiers iteratively, adjusting at each round the mis-

classification costs associated with instances in L on which errors were made in

previous rounds. Bagging (26), meanwhile, draws some number of independent

subsets (with replacement) from L and induces corresponding models over each

of these samples. In both cases an ensemble of classifiers is produced, and can

hence be used in the QBC framework. Another approach to QBC is to sam-

ple from the hypothesis space directly, as proposed for example by McCallum

and Nigam (113). Elsewhere, Argamon-Engelson and Dagan (8) have extended

the QBC paradigm to the class of probabilistic generative models. Specifically,
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they measure uncertainty via the vote entropy calculated over their ensemble of

models.

Expectations-based models form the last family of methods we will review

here. Broadly, such methods look to explicitly maximize the change in some

criteria of interest likely to be achieved by acquiring a label. For example,

Roy and McCallum (137) propose selecting instances that directly minimize

the expected resultant model prediction error. To this end, instances are given

scores proportional to the reduction in error expected, should their label be

revealed. This expectation is computed using the current model. Expected

error minimization is theoretically appealing because it explicitly maximizes the

quantity of interest, namely classification accuracy. It has also been shown to

perform well empirically (137). Unfortunately, it is computationally intensive.

In a similar vein, Cohn (43) proposed selecting the instance that results in the

greatest (expected) reduction in variance. Finally, Settles and Craven (145) have

suggested maximizing the expected gradient length. This approach looks to select

the training instance(s) that will have the greatest effect on the parameters of

the model being induced.

A major drawback to all variants of active learning is that they bias the

training set by definition: no longer are the instances comprising the training

set drawn i.i.d. from the underlying distribution. There have been a few recent

efforts to mitigate this bias. Dasgupta and Hsu (49), for example, exploit hi-

erarchical clustering to label sub-clusters of instances with bounded error-rates.

Beygelzimer et al. (21), meanwhile, propose instance-weighted active learning

(IWAL), in which the label for a given instance in U is requested with a proba-

bility carefully tuned to provide label complexity bounds.

Having reviewed the active learning framework and corresponding methods,

we next address several unrealistic assumptions in active learning that have

impeded its adoption for real-world tasks (14).

4.1.2 Unrealistic Assumptions in AL

In the canonical active learning scenario, one assumes that there is some budget

available for acquiring labels from an expert. The expert is assumed to be orac-
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ular, i.e., infallible. Acquiring a label from the expert has an associated cost.

The aim is to spend the budget wisely in order to maximize predictive perfor-

mance. The usual strategy is to greedily acquire labels for the most promising

examples in U until the budget is exhausted. Looking to bring active learning

out of theoretical development and into practice, in this chapter we introduce

methods that relax the above assumptions. Our goal is to make AL more useful

in real-world scenarios in general and in the citation screening task in particular.

We will start with the assumption that a single, infallible oracle provides

labels requested by the learner at a fixed cost. Clearly this is unrealistic. Real-

world applications suitable for active learning often include multiple domain ex-

perts who provide labels of varying cost and quality. Indeed, this is the case in the

citation screening task: several reviewers typically participate in the screening

for any given project, some of whom are usually seasoned systematic reviewers

while others are relative novices. In Section 4.3 we explore this multiple expert

active learning (MEAL) scenario and develop a novel algorithm for instance al-

location that exploits the meta-cognitive abilities of novice (cheap) experts in

order to make the best use of the experienced (expensive) ones. We demonstrate

that this strategy outperforms strong baseline approaches to MEAL on both a

sentiment analysis dataset and two datasets from our motivating application of

citation screening. Furthermore, we provide evidence that novice labelers are

often aware of which instances they are likely to mislabel.

A second unrealistic assumption we address in active learning is that in-

stances are interchangeable with respect to labeling difficulty. That is, it is

usually assumed that the cost (i.e., the required annotation time) of labeling

a given example xi is equal to that of labeling xj (i 6= j). But this is plainly

näıve: usually certain instances will obviously belong to one class or another –

and thus be easy to classify – while others will be more ambiguous and therefore

require more time to label. The latter examples will be more expensive to label,

though doing so may help to induce a better model compared to labeling easy

instances. In Section 4.4 we develop a model to predict the time it will take to

label instances and propose a means of incorporating these predictions into the

active learning criteria. We show that incorporating these predictions into active
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learning indeed improves performance: i.e., for the same fixed budget, one can

induce a model with better predictive performance if (predicted) time-to-label

is taken into account during active learning.

Recently, other researchers have begun to address these assumptions, too.

Donmez and Carbonell (53), for example, have developed the ProActive learn-

ing framework for cost-sensitive active learning with multiple imperfect labelers.

Theirs is a flexible decision-theoretic approach that looks to maximize expected

utility. We compare this to our proposed meta-cognitive strategy for multiple

expert scenarios in Section 4.3, and highlight issues in estimating the utilities

associated with label acquisitions. Specifically, we show that the ProActive

strategy does not account for workload distribution, and can suffer due to the

difficulty in estimating the quantities required for its decision-theoretic calcula-

tions. We show that our approach outperforms ProActive strategies, at least in

some cases.

Other recent research has also investigated empirical (real-world) annotation

times. Arora et al. (9) demonstrated the feasibility of estimating the cost to

label instances, even across different annotators, in a movie review classification

task. As features, they incorporated information such as the word count (i.e.,

length) of a movie review. Their focus, however, was not on integrating this

information into AL, but rather the annotation time prediction itself. Elsewhere,

Baldridge and Palmer (15) emphasized the importance of taking annotator cost

and expertise into consideration. They demonstrated that the efficacy of active

learning can vary dramatically as a function of what measure of cost is used

(e.g., number of labels provided versus the real annotation time), highlighting

the need for time-sensitive active learning in real-world systems.

Settles et al. (146) demonstrated that knowing the (true) annotation time

for unlabeled instances can theoretically improve active learning performance.

However, the model they used to predict annotation times was not sufficient

to improve performance, and thus when they used the predicted rather than

the true labeling time, no performance gains were made. They used the same

Return-on-Investment (ROI) strategy recently advocated by Haertel et al. (72),

in which the utility calculated for an unlabeled example (i.e., a measure of its
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informativeness due to the active learning scoring function Q) is scaled by the

the time it will likely take to label it. Haertel et al. demonstrated that factoring

in predicted cost can improve active learning performance in a Part of Speech

(POS) tagging task. They note that the difficult part is estimating the cost

and utility functions. In Section 4.4, we present such functions for the citation

screening task, and achieve strong empirical performance. But we first take

a detour to consider the problem of appropriately evaluating the performance

of active learning systems for real-world tasks, in order to later quantify the

performance of the proposed methods.

4.2 Evaluating AL Systems in Imbalanced Scenarios

Evaluating classification systems in imbalanced scenarios, particularly in the

context of active learning, is difficult to do correctly (60). Consider first the

the aim of active learning, which is generally assumed to be deriving a good

predictive model. But in many document retrieval applications (such as the

citation screening case) the goal is to find all of the relevant instances in a finite

pool (e.g., the set of citations retrieved with a PubMed search) rather than to

induce a good predictive model. When presenting empirical results on systematic

review datasets, we will be careful to appreciate the true aim: reducing the labor

required to identify all of the relevant studies in a fixed set.

There is also the matter of using a suitable metric to quantify model per-

formance. Most work in information retrieval (IR) concerning metrics for the

evaluation of text classifiers has focused on variants of the weighted F -measure

(99), i.e., the weighted harmonic mean of sensitivity and precision (we will some-

times use specificity rather than precision).1 This weighting is parameterized by

λ, which explicitly encodes the tradeoffs inherent in the scenario under consid-

eration. Following this tradition, we will assume that cost(fn) = λ · cost(fp) for

some λ.

In the preceding chapter, we somewhat arbitrarily set λ = 2, effectively

weighing sensitivity four times as much as precision. This was an attempt to

1Taken together, sensitivity and specificity provide more information than sensitivity and
precision because specificity is independent of sensitivity, whereas precision is not.
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evaluate learning strategies for imbalanced scenarios in a general way using a

common metric. The correct λ for a given task is inherently application-specific.

But asking domain experts to provide this parameter outright is probably not

a good idea; humans, in general, are poor at this sort of explicit quantification

(86). Rather, we would like to elicit this weighting in a natural way. To this end,

we propose appropriating a method from medical decision theory (160) for elic-

iting this weight from domain experts that accounts for imbalanced classes and

asymmetric costs. We then apply this method to the case of citation screening

to define an appropriate λ.

Suppose that a predictive model – or an oracle – provides the probability that

a given citation is irrelevant (more generally, that a specific instance belongs to

the majority class). If this probability is sufficiently low, a rational reviewer will

want to peruse the abstract in full to ascertain if it should be included. On the

other hand, if the probability is high enough, a reviewer will not bother to read

the abstract. There is some threshold probability pt at which the reviewer forgoes

reading the abstract. In other words, reviewers are at this point indifferent to

whether or not they read the abstract because, at this threshold, the expected

value of their reading it is equal to the expected value of their not reading it.

Suppose that we elicit this pt from the expert. Further, let V(tp), V(fp), V(fn),

and V(tn) denote the value of a true positive, false positive, false negative and

true negative, respectively. We have:

pt · V(tp) + (1− pt) · V(fp) = pt · V(fn) + (1− pt) · V(tn) (4.2)

The LHS of Equation 4.2 is the expected value of reading the abstract; the RHS

is the expected value of not reading the abstract. This implies:

V(tp)− V(fn)

V(tn)− V(fp)
=

1− pt
pt

= λ (4.3)

Then V(tp)−V(fn) is the penalty of not reading a relevant abstract, and V(tn)−

V(fp) is the cost associated with reading an irrelevant abstract. Thus 1−pt
pt

is

the ratio of the cost of a false negative to the cost of a false positive, giving us
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our desired λ. Recall the definitions of sensitivity and specificity from Equations

2.1 and 2.2. We then define our metric, which we call Utilityλ, as follows:

λ · sensitivity + (1− specificity)

λ+ 1
(4.4)

For evaluation of models for the task of citation screening, we elicited this

weighting from the project lead on one of the ongoing systematic reviews at the

Tufts EPC. We asked him at what probability of a document being irrelevant

would he exclude it without reading the abstract. We asked this same question

repeatedly, increasing the number of citations that needed to be screened for

the hypothetical project. Note that this is a more intuitive question to answer

than that of an explicit request for λ, because it mimics a real-life decision

process. In line with expectations, pt decreased slightly as the set of citations

that needed to be screened grew. Specifically, for N ≤ 10, 000 abstracts, the

threshold pt provided was 95% of being irrelevant (pt = .05), which translates

to λ = 19. When N > 10, 000, he set pt = .1 (90% of being irrelevant), giving

λ = 9. In general, we will use λ=19 in our experimental evaluations, because

the systematic review datasets with which we experiment (Table 2.2) comprise

10,000 or fewer citations.

Now that we have defined a suitable evaluation metric, we turn our attention

back to methods for real-world active learning. We will make use of the U19

metric in our empirical evaluations of the proposed approaches.

4.3 Multiple Expert Active Learning

A significant obstacle to deploying supervised machine learning systems is ob-

taining sufficient labeled training data to achieve acceptable performance. The

active learning protocol looks to mitigate this expense by allowing the learning

algorithm to interactively choose its training data from an unlabeled pool with

the aim of selecting only those examples most useful in inducing a model. But,

as discussed in 4.1.2, active learning methods have tended to make several unre-

alistic assumptions. One such simplifying assumption is that labels are provided
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by a single, infallible oracle. This is clearly not always the case – often a group

of annotators can provide labels of varying quality and cost.

In this section, we investigate this multiple expert active learning (MEAL)

scenario, wherein a group of domain experts, each with an associated cost and

level of expertise, participate in the active learning task. We explore a funda-

mental problem in this common real-world scenario that has thus far received

limited attention: given a panel of experts, a set of unlabeled examples and a

budget, who should label which examples?

Ostensibly, the MEAL scenario is similiar to ‘crowd-sourcing’ (e.g., Amazon

Mechanical Turk1), in which annotation tasks are performed at some cost by

a (typically anonymous) group of users via a task marketplace. Recent work

has begun to explore active learning strategies for this scenario in the context

of machine translation (4). Our case differs in an important way – we are in-

terested in settings in which all annotators must possess a requisite minimum

aptitude for annotating instances, precluding the use of low-cost, untrained an-

notators via crowd-sourcing. This setting corresponds to a relatively common

scenario, particularly in ‘specialized’ (e.g., scientific/biomedical/linguistics) do-

mains: multiple domain experts with varying levels of expertise/experience and

commensurate costs are to annotate a pool of data. In such scenarios, the ob-

jective is to derive an active learning querying strategy that assigns instances

appropriately with respect to annotator expertise and expense, i.e., we would

like to assign ‘easy’ instances to novice experts and ‘difficult’ instances to skilled

experts.

The remainder of this section is structured as follows. First, we introduce

and motivate the MEAL scenario in the context of domains in which annota-

tion workload must be balanced across multiple experts of varying aptitude and

cost. In Section 4.3.1, we identify deficiencies of related MEAL approaches,

and then develop a novel algorithm for MEAL in Section 4.3.2 that exploits the

meta-cognitive abilities of novice labelers to inform the allocation procedure.

Intuitively, our approach relies on inexpensive experts to flag difficult examples

encountered during annotation; these will subsequently be reviewed by more ex-

1http://www.mturk.com
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perienced experts. We demonstrate empirically that this strategy out-performs

strong baselines, including previously proposed strategies for MEAL (53), with

respect to a sentiment analysis task (123) (4.3.3) and our motivating scenario

of biomedical citation screening. Further supporting the proposed approach,

in Section 4.3.4 we provide empirical evidence that novice labelers are indeed

conscious of which examples they are likely to mislabel, and also argue that

automatically identifying difficult instances is a hard task.

4.3.1 Proactive Learning and Baseline Strategies

We begin by reviewing ProActive learning (PAL) (53), a previously proposed

framework for practical active learning (including multiple expert scenarios).

One of PAL’s strength is its flexibility; it selects expert/instance pairs at each

step in active learning decision-theoretically, so as to maximize expected utility.

We find quantifying this utility tricky. Specifically, in practice it is difficult to

reliably estimate the variables required for estimating utility, as we discuss below.

In 4.3.1.2 we introduce two new, simple baseline strategies for MEAL: random

and active random.

4.3.1.1 ProActive Learning

ProActive learning (PAL) was proposed by Donmez and Carbonell (53, 54) as a

decision-theoretic approach to the task of selecting expert-example pairs during

each round of active learning. Denoting the instance space by X and (fixed) set

of experts by E, PAL requires the specification of a value of information function,

V : X→ R, that maps instances to their expected utility with respect to inducing

a classifier, and an expert-specific cost value C : E→ R.

Typically in active learning, one defines Q, which maps a given unlabeled

instance to a scalar representing the expected value of acquiring its label. For

example, uncertainty sampling scores unlabeled instances based upon how un-

certain the model is in their predicted labels. Donmez and Carbonell propose

that V can be any such active learning scoring function. Specifically, again de-
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noting the pool of unlabeled instances by U, for each iteration of PAL, an expert

and example is selected according to:

(e∗, x∗) = argmax
e∈E,x∈U

p(e, x) · V(x)

Ce
(4.5)

When empirically comparing our proposed methods to PAL, we use two

variants of Equation 4.5 (both of which were proposed by Donmez and Carbonell

(53)), that imbue p(e, x) with different semantics. For the sentiment analysis

task, we set p(e, x) to the probability of expert e providing a correct label for

example x (i.e., Algorithm 2 in (53)). Because it is unclear how to estimate

this probability in our experiments, we ‘cheat’ in favor of PAL by using the

true probability from the generative model used to derive the experts. The

second variant defines p(e, x) as the probability that expert e will provide a label

for instance x (i.e., Algorithm 1 in (53)). We use this version for our citation

screening experiments, where we actually have multiple real-world experts. We

note that if one is interested in quantifying the expected utility as defined as

improvement over labeling instances as belonging to the predominant class, then

one should adjust p(e, x) for prevalence, i.e., by using p(e, x) − π. Here we are

interested in using these utility scores to rank instances, and thus adjusting by

a constant such as π will have no effect.

In this case, examples that the novice reviewer labeled as ‘difficult’ were

treated as instances this expert refused to label within the PAL framework. We

then induced a classifier to predict the probability of the novice expert providing

a label for a given instance.1 As we will observe, one shortcoming of PAL for

our setting is that the expert-example pair is selected myopically, without regard

to balancing workload at each step, often resulting in inequitable workloads for

participating labelers.

4.3.1.2 Random Baselines

The other two strategies we compare to are both randomized variants that assign

examples to experts selected with equal probability. The simplest instance of this

1We used a linear kernel SVM, estimating p(e, x) by scaling the output via Platt’s method
(127).
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is the most straight-forward MEAL strategy possible: pick both the example and

the expert at random. We refer to this method simply as random. Note that

this is just (passive) learning with labels provided by multiple sources wherein

the model ignores which annotators labeled what. The second strategy, which

we refer to as active random, selects instances in decreasing order of Q(xi) (i.e.,

estimated informativeness) and again picks experts uniformly at random.

4.3.2 Meta-Cognitive MEAL

We now present our strategy for MEAL, which comprises two technical innova-

tions. First, unlike PAL, we explicitly model the workload distribution to ensure

that all available annotators are assigned a sufficient amount of work – this is

important in our scenario wherein experts are also possibly paid when not la-

beling data (i.e., salaried). Second, we allocate instances commensurate with

expertise in a cost-effective manner by exploiting the meta-cognitive abilities of

novice labelers. In particular, we augment the binary label set {−1, 1} with a

third, extra-categorical label of “difficult”, i.e., the annotator is unsure how to

categorize the instance because it is too hard. When an expert labels an instance

as “difficult”, it is passed on to someone with more expertise.1 Note that we

assume this extra-categorical label incurs the same annotation cost as provid-

ing any other label. Asking highly skilled experts to re-label difficult instances

makes sense in light of recent work by Sheng et. al (149) in which they argued

that it is often more worthwhile to re-label instances rather than to label as-yet

unlabeled examples. Rebbapragada has also shown that sometimes asking ex-

perts to spend more time thinking about particular, seemingly noisy labels they

previously provided can be more fruitful than acquiring new labels (133).

This exploitation of human intelligence during active learning bears some re-

semblance to Attenberg and Provost’s recently introduced guided active learning

(13), wherein the expert explicitly provides instances from the minority class

in active learning scenarios with class imbalance. In meta-cognitive MEAL we

similarly rely on human intelligence, specifically by assuming that experts are

1We allow all except for the most highly skilled expert to use the “difficult” label; were s/he
to label an example as such, there would be no one more qualified to whom we could defer.
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capable of identifying difficult instances selected for labeling by the learner. (By

contrast, in guided active learning it is assumed that experts are able to find

representative instances of the minority class.) More precisely, we assume that

novice experts will refuse to provide a label when they have low confidence in

their ability to correctly classify a given example. In this case, we defer to some-

one with more expertise to label said instance. We provide empirical evidence

that inexperienced labelers are indeed aware of which instances they are likely

to mislabel in Section 4.3.4.

To allocate instances, we require an estimate of each expert’s level of exper-

tise throughout the MEAL process, denoted by αe. In practice, these may be

inferred via unsupervised methods (e.g., using EM) over a small sub-sample of

instances labeled by all participating experts (54, 132, 172), or through avail-

able domain information such as expert salaries. We take the latter approach in

this work, as we assume that within effective organizations, expert pay grade is

highly correlated with aptitude. We note that this assumption will not always

be valid, e.g., in cases where pay may correlate only with seniority. In such cases

expertise should be estimated either via the aforementioned unsupervised meth-

ods, or perhaps via other external domain information (e.g., knowledge regarding

individual expertise levels).

Algorithm 1 Meta-cognitive MEAL: Allocation, Version A

1: Input: Unlabeled data U, active learning scoring function Q, expert panel
E, per-round labeling budget B, desired work distribution parameters W,
expert queues qe ∀e ∈ E

2: U← sort U according to Q
3: C← 0 {total annotation cost}
4: A← {} {list of assignments}
5: while C < B do
6: e∗ ← draw from E according to Mult(W)
7: if |qe∗ | > 0 then
8: x∗ ← qe∗ .dequeue()
9: else

10: x∗ ← next example in U

11: end if
12: A← A ∪Assign(e∗, x∗)
13: C← C + Ce∗(x

∗)
14: end while

15: Output: List of assignments A
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Algorithm 2 Meta-cognitive MEAL: Re-Allocation

1: Input: Expert panel E, expert queues qe ∀e ∈ E, example x∗, expert to
whom example x∗ was originally assigned to e∗, estimates of expertise levels
αe ∀e ∈ E

2: E′ ← {e|e ∈ E, αe > αe∗}
3: draw e′ from E′ with p ∝ αe′
4: qe′ .enqueue(x

∗)

Our strategy is presented in Algorithms 1 and 2. Note that Algorithm 2,

Re-Allocation, is invoked whenever a novice labeler designates an instance as

difficult. Note also that assignments are different from expert queues. The

latter holds instances that less-experienced experts decided not to label (due to

difficulty); this will always be empty for the most-novice expert. The key insight

is to rely on the ability of the novice expert to identify the challenging examples

that the strong expert ought to label. The benefits of such a strategy are two-

fold; weak experts will label easier examples at a low-cost while expensive experts

will be used sparingly and wisely on difficult examples. To achieve this, we first

sort the unlabeled pool of documents, U by an active learning scoring function Q

(Line 2). At each MEAL step, we draw from a multinomial parameterized by W

to select an expert (Line 6). This distribution may either reflect a preference for

equitable labor shares or may be dynamically updated to maximize some other

objective.1 For example, in our sentiment analysis experiments, we initially set

W such that we ∝ Ce. As soon as a weak expert has refused to label a difficult

example (i.e., when there exists a non-empty qe), we set we ∝ |qe|, that is,

proportional to the size of the (stronger) expert’s queue of re-assigned (difficult)

instances, thus prioritizing the re-labeling of hard instances over the labeling of

unlabeled examples. Once the queues are exhausted, we return to distributing

examples to experts with probability inverse to their cost. If the drawn expert’s

queue of re-assigned examples is not empty, then they are assigned the next

instance from their queue. Otherwise, they are assigned the next instance in

the ranked pool, U (Lines 7-10). We continue until the per-round budget is

exhausted. Algorithm 2 describes our re-allocation strategy. When a relatively

1If updated, however, one must be careful to renormalize so that W sums to 1.
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novice expert designates an example as being difficult, it is assigned to a more

experienced expert’s queue with probability proportional to their expertise.

Algorithm 3 Meta-cognitive MEAL: Allocation, Version B

1: Input: Unlabeled data U, labeled data L, active learning scoring function
Q, probabilistic classifier induced over ‘trusted’ labeled examples g, expert
panel E, per-round labeling budget B, desired work distribution W, expert
queues qe ∀e ∈ E

2: U← sort U according to Q

3: C← 0
4: A← {} {list of assignments}
5: while C < B do
6: e∗ ← draw from E according to Mult(W)
7: if |q∗e | > 0 then
8: x∗ ← q∗e .dequeue()
9: else

10: c← flip a coin with bias ∝ αe
11: if c is heads then
12: x∗ ← arg minx∈L g(label(x)|x)
13: else
14: x∗ ← next example in U

15: end if
16: end if
17: A← A ∪Assign(e∗, x∗)
18: C← C + Cost(e∗, x∗)
19: end while

20: Output: List of assignments A

In Algorithm 1, if no instances designated as difficult by lesser experts are

assigned to the drawn expert, we then assign to them the next instance in the

ranked unlabeled pool, U (line 8). However, depending on the scenario, it may

make more sense to re-label instances in the labeled pool L with some proba-

bility, even though these examples were labeled with relatively high confidence

by definition. This makes sense in cases where incorrectly annotated training

data is costly, even if it doesn’t affect the predictive performance of the induced

model. Algorithm 3 operationalizes this intuition.

The key difference between this and Algorithm 1 is the procedure for when the

drawn expert’s queue is empty (Lines 9-15). Formerly, they were simply assigned

the next instance in the sorted U. Here they are assigned a labeled instance in

L with probability proportional to their estimated accuracy αe (Lines 10-12). In

particular, we maintain a probabilistic model g induced over the highest skilled

expert. We then select for labeling the instance in L whose assigned label has
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the lowest probability of being the true label, according to g (Line 12). This can

be viewed as attempting to automatically identify mislabeled instances in L in

a semi-supervised way in multiple expert scenarios.1

4.3.3 Empirical Results – Simulation Experiments with Senti-

ment Analysis Data

We first present an experimental evaluation over a sentiment analysis task (used

in the previous chapter). This benchmark dataset (123) has only a single set of

gold-standard labels. To compare MEAL strategies, we therefore must generate

artificial experts to simulate multiple labelings. The aim of this experimental

setup is to demonstrate that when novice reviewers are capable of recognizing

those instances they are likely to mislabel, the meta-cognitive MEAL strategy

(Algorithm 1) outperforms strong baselines in terms of induced model perfor-

mance versus cost. We justify these assumptions empirically in Section 4.3.4, in

which we show that novices are indeed capable of discerning difficult examples.

Furthermore, in Section 4.3.8 we show that our strategy outperforms baseline

strategies in practice (i.e., in the citation screening task).

Recall that the movie sentiment dataset was created by Pang and Lee (123).

Further recall that this dataset comprises 2000 movie reviews, half of which

have been designated as ‘positive’ and the other half as ‘negative’. The aim is to

induce a classifier to discriminate between positive and negative reviews. This

movie sentiment data is attractive for our work because it is a widely utilized

classification task. Moreover, due to the subjectivity inherent to the task, one

can easily envision variance in expert ability to categorize reviews.

To model the MEAL scenario, we must simulate labeling of the dataset by

multiple experts with varying cost and skill. Moreover, we must associate a

measure of difficulty with each instance. To this end, we use the probabilistic

model for multiple annotators proposed by Whitehill et al. (172). In particular,

we assume that each expert e has an associated expertise level αe ∈ (−∞,∞),

where large αe implies a skilled labeler. Furthermore, we assume that each

1Note that this has connections to work on automatically identifying mislabeled instances
(29); the difference here is that we are explicitly modeling one (experienced) expert to infer the
mistakes of another (inexperienced) one.
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instance x has an associated difficulty βx ∈ [0,∞) where small βx implies a

difficult example. Following Whitehill’s notation, we denote the label given by

expert e to example x by ŷex and the true label for example x by yx. Then

probability with which expert e labels instance x correctly is as follows:

p(ŷex = yx|αe, βx) =
1

1 + e−αeβx
(4.6)

For our experiments, we generated both α and β. To set β, we begin with

the observation that in the citation screening task, instances can be categorized

roughly into two categories; hard and easy examples. We believe this to be

a more general phenomenon (and hence applicable to the movies dataset, for

example), as is consistent with observations made by Beigman et al. (20). We

thus invent two Gaussian distributions over β; one corresponding to hard and

the other to easy examples. We believe that the majority of the easy instances

will in fact be extremely easy, as in our experience the majority of examples

in classification problems fall obviously into a specific class. To model this,

we truncate the Gaussian corresponding to the easy examples at its mean (see

Figure 4.3), thus most examples will be relatively quite ‘easy’. (If we did not

truncate, the mean would be shifted away from the ‘easiest’ examples and toward

‘medium-difficulty’ instances).

We arbitrarily decided that peasy = .6 of the instances were to belong to the

easy class. Thus a βx for each example x was drawn from the easy distribution

with probability peasy and from the hard distribution with probability 1-peasy.

Figure 4.3 shows a histogram of β drawn for the 2000 movie review instances.

The expertise levels, α, were generated under a similar assumption. As we are

Figure 4.3: Histogram of drawn βs.

interested in scenarios wherein the participating annotators have varying levels
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of expertise and cost, we generate experts belonging to two classes; weak and

strong. These correspond to novice and experienced labelers, respectively. In

reality, there may be more of a gradient in expertise levels, but this bimodal

distribution captures the essence of the situation in which we are interested.

Furthermore, for specialized domains (where active learning is arguably most

valuable, because if labeling does not require domain expertise, labels can likely

be acquired cheaply) such a binomial distribution is reasonable, because it en-

codes the trainer/trainee relationship common in such work. The α values are

thus drawn from Gaussians with means set such that the average probability of

correctly labeling a given difficult example under the above proposed model is

0.6 and 0.95, respectively. We set the corresponding variances to 0.1. Likewise,

we draw a salary for each weak and strong expert from two Gaussians, with

means $30,000 and $150,000, respectively, both with variances of $10,000. Note

that we don’t require salary to be a perfect predictor of labeler accuracy, but

rather a crude proxy. We assume the weak experts designate an instance as

‘difficult’ when the (true) probability of their labeling it correctly is ≤ .8.

Figure 4.4 shows results with a varying number of (simulated) participating

experts. The y-axis in all plots corresponds to the induced accuracy over a hold-

out set,1 and the x-axis to cost. We compute cost by multiplying the expected

time to label an instance (movie review) by the unit cost of the labeler, as

calculated from their salary. To calculate a reasonable time to label for each

review, we make the simplifying assumption that all labelers read 250 words per

minute and transform the length of a review, as measured by word-count, to

a labeling time under this model. All plots shown are averages over ten-fold

cross-validation.

The main observation to make is that after the $500 mark, the meta-cognitive

curve dominates all other strategies, in all four simulated scenarios. The differ-

ence in induced accuracy is particularly pronounced in the two-expert case. It is

also interesting that the active random strategy tends to outperform the ProAc-

tive strategy. We believe this is due to the greedy nature of the latter, which

1Note that accuracy is the correct metric to use in this case, because the class distribution
is balanced.
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Figure 4.4: Results over movies dataset with synthetic experts. The number of
‘weak’:‘strong’ experts, respectively, is given in the parentheses beneath each plot.
The four strategies shown in each plot are: meta-cognitive MEAL (the solid, thick
grey line); ProActive learning (53) (the bold, dotted black line); active random (the
dotted grey line); random (the thin, solid line). One interesting phenomenon seen
in these plots is that for low dollar amounts (< 500), random sampling consistently
outperforms other methods. It is not entirely clear to us why this is the case, but
one explanation may be that random sampling effectively acquires a relatively cheap
set of labels from a diverse set of experts with little money, while other strategies
spend their allotments relatively quickly. There may be an advantage very early on
in acquiring many labels cheaply; but notice that this strategy quickly asymptotes.
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we have observed to query the most expensive expert(s) nearly exclusively, thus

acquiring far fewer instance labels (see Figure 4.5).

Figure 4.5: Number of unique instances that were labeled correctly (white) and
the number that were mislabeled (grey), for each strategy.

Because imperfect labels are cheap, there is a trade-off between acquiring as

many labels as possible and introducing mislabeled instances into the training

set. This is shown in Figure 4.5, which plots the average number of unique

instances that were labeled, and the percentage of those that were mislabeled

once the budget was exhausted. Notice in particular that, unsurprisingly, the

two random baseline strategies acquire the most unique instance labels, though

they also incur the highest percentage of mislabeled instances in their training

sets, at ∼ 13%.

4.3.4 On The Dunning-Kruger Effect

We have shown that our meta-cognitive strategy for MEAL can outperform

other approaches if the (novice) labelers are capable of identifying the instances

that they are likely to mislabel. This assumption of self-awareness regarding

annotation acumen seems at odds with the known tendency for lower-skilled

individuals to over-estimate their abilities, a phenomenon known as the Dunning-

Kruger effect (92).

In the seminal paper on the subject, Dunning and Kruger provide evidence

for the following conjecture:

... the skills that engender competence in a particular domain are

often the very same skills necessary to evaluate competence in that

domain ... (92)
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If this were indeed the case it would be problematic for the proposed meta-

cognitive approach; surely if novice reviewers are unable to recognize instances

they are likely to mislabel, then the strategy cannot be effective. A natural

concern is that due to the Dunning-Kruger effect, only skilled experts will be able

to recognize ‘difficult’ instances. However, in the following section we provide

preliminary evidence that at least for our biomedical citation screening domain,

novice labelers are indeed capable of recognizing those instances that they are

likely to mislabel (i.e., difficult instances).

4.3.4.1 Labeling Confidence

We first explore whether the confidence annotators have in their provided la-

bels correlates with the likelihood of the labels being correct. To this end, we

asked two novice reviewers to provide the ‘confidence’ they place in their own

labels, and compared the average confidence ratings between the examples they

classified correctly and the examples they misclassified.

Specifically, the two novice reviewers (we refer to them as Reviewers “1” and

“2”) screened 4751 biomedical abstracts from the proton beam dataset (157)

summarized in Table 2.2. Note that we didn’t use the proton beam dataset in

evaluation because we did not prospectively gather ‘difficult’ labels from novice

reviewers at the time of their screening the citations. Using the labels of a third,

senior expert as a ‘gold standard’ we identified for each novice reviewer their

sets of true positive, true negative, false positive, and false negative abstracts

(denoted TP , TN , FP , and FN , respectively). For each reviewer we selected

a manageably-sized random sample of citations stratified over these four sets.

Because the sizes of the four sets are very different (there are many more false

positives than false negatives), we used the following weighted random sampling

scheme: we selected all |FN | examples in the FN set (the smallest set); twice

as many examples (2|FN |) from the next more prevalent set (FP ); and thrice

as many examples (3|FN |) from each of the remaining most prevalent sets (TP ,

TN). The stratified random samples consisted of 198 citations for Reviewer 1,

and 171 for Reviewer 2.

We then presented the novice reviewers with the sampled citations in random
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order, along with the labels they had provided, and asked them to rate for

each citation their confidence in their own labels using a four-point scale of

equispaced categories, i.e., a Likert scale (102): ‘very uncertain’, ‘uncertain’,

‘certain’, and ‘very certain’. For analysis, we encoded the four categories as

{−2,−1, 1, 2}, respectively. The reviewers were blinded to the ‘gold standard’,

and were told that they were given a random sample of citations with no details

regarding the sampling scheme. We tested whether the mean confidence of each

reviewer differed between the citations they classified correctly (TP and TN) or

incorrectly (FP and FN) using linear regressions accounting for the probability

sampling weights of our sampling scheme.

Figure 4.6: Average (novice) annotator confidence provided for labels of both
correctly and incorrectly labeled examples over the proton beam dataset.

Figure 4.6 shows the mean confidence scores for correctly and incorrectly

classified examples extrapolated to the total corpus for both reviewers. Mean

confidence scores for Reviewer 1 were 2.6 units (95% confidence interval: 2.2, 3.0)

higher in the correctly classified citations compared with the incorrectly classified

ones; for Reviewer 2, the difference was 1.1 units (95% confidence interval: 0.6,

1.5). The difference is statistically significant for both reviewers (p < 0.0001). In

other words, novice reviewers were substantially more confident in their correct

labels than in their incorrect labels.

4.3.4.2 Recognizing Difficult Instances

In the preceding section, we had novice reviewers provide confidence scores for

labels they had previously provided (i.e., the analysis was retrospective). We

now focus on the prospective case, in which we give an inexperienced annotator

the option of refusing to provide a label for difficult instances. We used two
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datasets for our empirical evaluation: the COPD dataset (33) (Table 2.2) and

Crohn’s, which is from a systematic review of randomized controlled trials of

monoclonal antibodies and other anti-TNF biologic agents for Crohn’s disease.

The datasets comprise 1606 and 2020 potentially eligible citations, respectively.

For our ‘gold standard’ labels, we used labels provided by the expert reviewer

who originally conducted the review. We then had an inexperienced reviewer

screen both datasets, allowing her to refuse to label instances she thought dif-

ficult. We trained her in the standard way; for both datasets, an experienced

reviewer familiar with the topic explained the inclusion criteria to her (i.e., what

constitutes a ‘relevant’ study) and classified a few citations with her during a

period of approximately thirty minutes. The inexperienced reviewer designated

9% (144 out of 1606) of the instances in the COPD dataset as difficult, and 6%

(119 out of 2020) of those in the Crohn’s dataset as difficult.

Figure 4.7: Novice reviewer labeling accuracy for those examples she was willing
to label (left) and for those she designated as ‘difficult’ (right), over two datasets –
COPD and Crohn’s. See text for details.

We also asked the reviewer to label those instances she designated as difficult

as best she could (i.e., we asked to which class she would assign an instance,

were she forced to provide a label). We were thus able to compare the reviewer’s

accuracy over the examples she designated as difficult to her accuracy over the

rest of the data. The hope is that the inexperienced labeler can categorize easy

instances with high accuracy, while being able to recognize instances she is likely

to mislabel. Thus we would expect her labeling performance over the two subsets

of instances (difficult, easy) to conform to our expectations as modeled in Section

4.3.3.
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This assumption is supported by Figure 4.7, which plots the novice labeler’s

accuracy over the instances she felt confident enough to label (left) and those

that she designated as being difficult (right) over both datasets. For the COPD

dataset, she achieved nearly 90% accuracy on the former set, and just over 60%

accuracy on the latter. Similarly, on the Crohn’s data she was 82% accurate on

the instances she agreed to label, but performed poorly on those she refused to

label (∼ 50%). Reassuringly, this is in line with our modeling assumptions.

4.3.4.3 The Difficulty of Predicting Difficulty

In the proposed strategy we rely on novice labelers to inform us that instances

are difficult. A natural alternative approach is to instead build a model which

automatically identifies ‘difficult’ examples. This would allow us the same advan-

tages – we could assign hard instances to experienced labelers and easy examples

to novice labelers – while saving us some of the cost by reducing the number of

(otherwise useless) ‘difficult’ labels provided by the inexperienced labeler(s).

The problem is that, at least in our application, predicting which instances

labelers will designate as difficult is a non-trivial task. To investigate the feasi-

bility of building such a predictive model, we first attempted to induce a stan-

dard Bag-of-Words (BOW) SVM over each of two systematic review datasets

for which an inexperienced labeler indicated which instances were difficult. In

ten-fold cross-validation, which is actually an optimistic assessment because in

practice one would need to start using the model long before ninety percent of

the data was labeled for it to be useful, predictive performance was quite bad.

In particular, the model achieved an average sensitivity to difficulty examples

of 64.3% with an average specificity of 53.6% on one dataset (COPD), and an

average sensitivity of 66.2% with an average specificity of 49.2% on the other.1

Nor does it appear that model uncertainty correlates with human uncertainty.

To show this, we induced an SVM over the entire dataset – again, this is therefore

an optimistic assessment. As above, we used the ‘difficult’/‘not difficult’ labels

1Here we used a linear kernel (and grid search to find the cost parameter c). Results using
both an RBF and polynomial kernel were similar for both datasets.
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Figure 4.8: ROC curves showing discriminatory capability with respect to pre-
dicting which instances will be labeled ‘difficult’. The dotted line corresponds to
the distance to the hyperplane, and the bold, solid line to the feature-entropy score
(Equation 4.7). Neither measure is particularly good at predicting difficulty.

provided by the novice reviewer as the target concept. We then generated a ROC

curve using the ranked distances to the induced hyperplane, shown in Figure 4.8

as the dotted line. It is clear in the figure that model uncertainty is not a good

predictor of human uncertainty (i.e., difficulty).

Human annotators obviously operate in a very different ‘feature-space’ than

BOW classifiers. We have previously shown using labeled features (see Chapter

3) to be helpful in active learning (165) and could hypothesize that it is more

realistic to base uncertainty on such information (e.g., words or n-grams asso-

ciated with a specific polarity/class). Here we define a metric of uncertainty

over labeled terms that scales the log term entropy in a document by the log of

the total number of terms therein. Technically, denoting the number of positive

terms in a given document as T+, the number of negative terms T−, and the

total number of labeled terms in a document N , we have:

− log(N) · log

[
T+

N
log

(
T+

N

)
+

T−

N
log

(
T−

N

)]
(4.7)

Intuitively, this feature-entropy score is a proxy for difficulty because it is large

if there are many, conflicting terms in a document. Disappointingly, however,

this measure fares worse than model uncertainty in its ability to discriminate

‘difficult’ from ‘not difficult’ examples, as shown in Figure 4.8.

While it would obviously be premature to conclude from this preliminary
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evidence that automatically predicting which examples are difficult for use in

instance allocation is impossible, it does demonstrate that the problem is non-

trivial, and straight-forward techniques don’t work. We therefore argue that

reliance on novice experts to assess difficulty is an appropriate and effective

strategy, at least for our domain.

4.3.5 Empirical Results – Citation Screening

We have demonstrated that our meta-cognitive MEAL strategy can be successful

under certain conditions (Section 4.3.3), and that these assumptions hold in

practice, at least in the context of biomedical citation screening (Section 4.3.4).

Bringing these two points together, we now demonstrate the efficacy of our

strategy for MEAL on datasets collected from our deployed biomedical citation

screening system. We first outline our experimental setup, defining the actual

cost structure in our application and discussing pertinent algorithmic details.

We then show that under the presented cost model, our meta-cognitive MEAL

outperforms baseline strategies over two citation screening datasets.

4.3.6 Experimental Setup

We ran experiments on the COPD and Crohn’s datasets. In this case, two

experts (one experienced and one novice) screened the citations comprising the

datasets, deciding which were ‘relevant’ and which were ‘irrelevant’ to the review

at hand. We again use the experienced expert’s labels as the ‘gold standard’.

As discussed above, evaluation over these datasets is somewhat complex, as

one must realistically assess the trade-offs involved, as well as the total cost asso-

ciated with different outcomes. For example, as mentioned previously, the cost

structure here is asymmetric; ‘false negatives’ cost significantly more than ‘false

positives’. We thus use the weighted evaluation metric described by Equation

4.4, which expresses this trade-off. To recapitulate, we assume that sensitivity

to the minority class of ‘relevant’ citations is λ times as important as mitigating

cost; note that we assume cost is normalized).1 We denote this ‘utility’ metric

1Here we are assuming that cost is ∝ time · expertise.
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Uλ, quantifying this tradeoff with the λ parameter. Recall that this exercise

resulted in a λ of 19 for the citation screening case.

Uλ =
λ · sensitivity + (1− cost)

λ+ 1
(4.8)

To estimate the costs involved with each MEAL strategy, we use a rough

estimate of the salaries for the two reviewers which we converted into a unit

cost (i.e., a cost per second). This allows us to calculate the cost of labeling

given an estimate of per-citation annotation time. Here we make the simplifying

assumption that all citations take thirty seconds to label, an empirical average

taken over the dataset. We refer to the cost of acquiring a labeled training

set with a MEAL strategy as the upfront labeling cost. Once this set has been

collected there are two additional costs that must be taken into consideration.

First, some citations in the training set may have been mislabeled. The direc-

tion of this mislabeling has different costs associated with it; false positives will

be subsequently retrieved in ‘full text’, which is quite expensive. In practice, all

examples designated as ‘relevant’ by novices would be re-screened by the project

lead (expert) in order to avoid incurring this cost unnecessarily. Therefore, we

follow this procedure in our evaluation; we simulate the experienced expert re-

screening all the documents designated as positive by the novice reviewer. False

negatives are not directly accounted for in the cost model. Instead, we incorpo-

rate these into our evaluation by considering the overall sensitivity of a strategy.

Thus in our case, sensitivity is calculated over both the training data (i.e., if a

‘relevant’ citation has been labeled as ‘irrelevant’ then sensitivity suffers) and

over those instances classified by the induced model. This evaluation setup is

appropriate for the finite pool scenarios we have previously discussed (Section

4.2; see also (168)). In such scenarios the primary aim is not to induce a good

predictive model, but rather to categorize a fixed set of instances. The second

additional cost involves those instances classified by the model induced over the

acquired training set as ‘relevant’. Every example that the model predicts as

being ‘relevant’ must be screened; for this we charge the average cost of the two

experts screening a citation. The instances the model designates as ‘irrelevant’
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are ignored, which may affect sensitivity. The above cost is summarized by the

following equation:

cost = cost(L) + cost(FPh) + cost(TPc + FPc) (4.9)

Where L refers to the cost of labeling data, FPh to false positives due to human

misclassifications, and TPc, FPc to instances correctly and incorrectly classified

by the classifier as relevant (respectively).

We conducted experiments as follows. First, we gave each MEAL strategy

two seed instances; one randomly selected from the set of ‘relevant’ instances

and the other from the set of ‘irrelevant’ instances. We allowed each strategy to

spend $25 per round (iteration) on labeling.1 Recall that a round is an iteration

of active learning. After each round, we calculated the sensitivity (proportion of

identified ‘relevant’ citations) and the total cost (as described above). We then

combined these into a single metric that corresponds to the utility achieved for

a given upfront labeling cost; U19. All presented results are averages over ten

independent runs in which each strategy received the same seed set selected for

a given run.

4.3.7 Algorithmic Details

We make some small modifications to the ProActive (53) and meta-cognitive

approaches for our empirical experiments. Both random baseline strategies are

unchanged. As mentioned in Section 4.3.1.1, we used the first proposed variant

of ProActive learning here, because it is a more natural fit for the data. In

particular, examples that the novice reviewer labeled as ‘difficult’ were treated as

instances this expert refused to label. We then induced a probabalistic classifier

to predict the probability of a novice expert providing a label for a given example.

We plugged this probability into Equation 4.5.

For meta-cognitive MEAL, we used the second variant (i.e., Algorithm 3).

Because of the asymmetric cost structure, we decided it would be most advan-

tageous for the experienced reviewer to double-check the novice’s labels, even

125$ was selected somewhat arbitrarily; we felt it provided an appropriate amount of gran-
ularity.

143



4. REAL WORLD ACTIVE LEARNING

if there are no remaining instances that have been explicitly designated as dif-

ficult, i.e., if |Qe| is 0. Therefore, in line 10 in Algorithm 3, we set the bias to

1, implying that the experienced expert will re-label the instance in L classi-

fied by the novice that is least likely to be labeled correctly, according to the

model induced over the experienced expert’s training data. A caveat here is that

because the experienced expert will review all instances that the weak expert

labeled as ‘relevant’, we limit re-labeling during MEAL to instances that have

been designated as ‘irrelevant’ by the novice. We set W to [.5, .5], thus enforcing

an equal workload distribution.

4.3.8 Results

Figures 4.9 and 4.10 show the results over the COPD and Crohn’s datasets,

respectively. The most important observation is that the meta-cognitive MEAL

approach consistently dominates the others, in terms of the metric of interest,

U19.

Active
Random

Figure 4.9: Upfront label cost versus U19, Chronic Obstructive Pulmonary Disease
(COPD).

ProActive learning fares poorly here. This is because it requests labels from

the experienced expert almost exclusively, due to its greedy nature, and thus ac-

quires relatively few (pricey) labels. Additionally, over both datasets the model

induced to predict which instances the novice would likely refuse to label per-

formed poorly, further hindering PAL’s performance. The random strategies are

relatively competitive with one another. Interestingly, the random strategy here
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Random
Active

Figure 4.10: Upfront label cost versus U19, Crohn’s.

outperforms active random, contrary to the results over the sentiment analysis

task. Indeed, this is in line with our previous observations that uncertainty-

sampling active learning can perform poorly when there is significant class im-

balance (165). While we wanted to focus on instance allocation in this work,

and not the active learning scoring/VOI function, this suggests that perhaps

combining the meta-cognitive approach with a different active learning criteria

may perform even better (recall that we use standard uncertainty sampling to

rank U).

4.4 Modeling Annotation Time to Reduce Workload

in Active Learning

We have thus far addressed one unrealistic assumption made in active learning

work, namely that there is a single, infallible expert who provides labels. In

this section we address a second näıve assumption often made in active learning:

that the cost of acquiring labels for all instances is the same. We propose a

regression model that predicts the time it will take to label an instance given

its characteristics (e.g., length) and incorporate this prediction into the active

learning query function, Q. Normalizing the estimated utility of a given label

in terms of a specific active learning criterion (e.g., version space reduction) by

the expected cost of acquiring it effectively maximizes the return on investment

(ROI) (72).
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Using real data that we collected via our in-house annotation tool built for

citation screening called abstrackr (described at length in Chapter 6), we demon-

strate that this strategy outperforms more traditional ‘greedy’ active learning

strategies, which tacitly assume a uniform per-instance labeling cost. In other

words, when the predicted time to label an instance is factored into the decision

of which examples to have the expert label, a better model can be induced in

the same amount of time (i.e., at the same cost).

4.4.1 Modeling Experts

It has been shown that scaling the expected value of attaining a label for a par-

ticular instance by the cost, in terms of time, of acquiring said label can improve

the performance of active learning (72, 146). However, deriving a statistical

model to predict how long it will take to label a given example remains an open

challenge (9). Indeed, Settles et al. demonstrated that in certain cases, if the

true time to annotate were known then performance could be improved; however

their model was inadequate in predicting labeling times on their dataset, and

thus did not improve performance.

We hypothesized that, on average, annotation would take longer in the be-

ginning of the screening process, while the reviewer familiarizes him or herself

with the topic and screening criteria, and would gradually decrease thereafter.

Previous work on predicting annotation times has not taken into account expert

learning rates. Furthermore, in line with Settles et al. (146), we assume that

longer documents would take longer to annotate. These assumptions were borne

out by the empirical data collected from an ongoing citation screening project.

Figure 4.11 shows the relationship between mean annotation time and the or-

der in which abstracts were reviewed. This relationship is shown in the smoothed

dashed line, obtained from locally weighted linear regression with a sliding win-

dow of width 80% of the observations (lowess smoothing). The clear downward

trend is intuitively agreeable; the annotator is learning as they label documents,

and their speed thus increases as they become more familiar with the task. More-

over, as evidenced by the plot, their learning rate is more pronounced at the start

of the task, and tapers off toward the end. There is also clear correlation be-
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Figure 4.11: Document labeling time (in seconds) versus the order in which it
was labeled. The dashed line shows a moving weighted average, the solid line two
linear splines that captures this shape.

tween document length and labeling time, as can be seen in Figure 4.12, which

plots the association between document length and annotation time and a line

fit to this data (note the upward slope). In both plots, we do not show points

for 106 documents (out of 4,751) that had associated labeling times longer than

100 seconds. These were considered outliers (it’s likely that the reviewer became

distracted while the tool was displaying these abstracts), and they made the

plots difficult to read.

In addition to order and document length we also considered the correlation

between model uncertainty, i.e., distance from the induced SVMs’ hyperplane,

and labeling time. It has been conjectured elsewhere that examples that the

model is uncertain about may be in some sense difficult and thus take longer to

label (53). To test this, we induced a model over all of the labeled data, and

then computed the distance of each document to the separating hyperplane, a

proxy for uncertainty (see Section 4.1). As shown in Figure 4.13, a correlation

between model uncertainty and labeling time exists, but is rather weak compared

to the observed correlation between, e.g., document length and labeling time.

In particular, Spearman’s correlation coefficient for the former is -0.05, whereas

for the latter it is 0.39 (P-values < 0.001 for both). More problematically, the

uncertainty will be extremely unstable at the start of active learning, as the
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Figure 4.12: Document labeling time (in seconds) versus length (in words).

hyperplane will readjust dramatically as each new labeled example is acquired.

For these reasons, we do not include the uncertainty in our annotation time

prediction model.

We performed a regression analysis to predict the average time to annotate

each abstract based on the order in which it is screened (i.e., first, second, n-th)

and its length. We used a linear spline with a single knot at 1,000 abstracts to ap-

proximate the nonlinear relationship depicted by the solid line in Figure 4.11, as

this seemed a natural way of modeling the learning curve. Using 1,000 documents

for the spline regression was arbitrary; we just wanted to show that the learning

rate increases rapidly at the start of active learning and more slowly thereafter.

Linear mixed models with autocorrelated errors (to account for similarity of suc-

cessive abstracts) and with information regarding which abstracts were screened

in the same ‘session’ (to account for ‘session’-specific effects) yielded very simi-

lar coefficients to those of an ordinary least squares regression, and we therefore

used the latter model. Specifically, we model the time to screen a document d

as follows:

ŷd(β) = β0 + β1length(d) + β1n1 + β2n2 (4.10)

where the n1 and n2 variables are functions of the number of documents that

148



4.4 Modeling Annotation Time to Reduce Workload in Active Learning

Figure 4.13: Document labeling time versus its distance to the hyperplane in an
SVM induced over the entire dataset.

have already been labeled, which we will denote by n. Specifically, n1 is n when

fewer than 1,000 documents have been labeled, and fixed at 1,000 thereafter,

while n2 is 0 when fewer when 1,000 documents have been labeled and n− 1000

thereafter. This models the desired spline, which reflects the change in the

annotator’s learning rate.

Of course, while active learning is ongoing in practice, β is unknown. We

therefore learn an approximation to β, β̂, online using standard least-squares

regression and the annotation times of the documents labeled thus far as target

values. We then simply substitute β̂s for the βs in Equation 4.10. See Algorithm

4 for more details.

4.4.2 Active Learning with Predicted Labeling Times

Our algorithm for active learning with predicted labeling times is shown in Al-

gorithm 4. We first use a small sample of labeled data to get an initial estimate

of the β coefficients. Additionally, we induce an initial hypothesis with which to

begin active learning.

At each step in the active learning loop, which begins at line 5, we select

for labeling the ‘best-value’ document, i.e., the document with the largest payoff

per estimated time unit. This is shown in line 6, where d∗ denotes the document

selected for labeling by the reviewer. We then have the reviewer label this
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document, and record the time it required (lines 7 and 8). Next, we re-train

our classifier over the newly augmented training set (line 9). Finally, in line 10,

we update our estimate of the β coefficients using the document labeling times

observed thus far. In this way, we can estimate how long it will take to screen

the remaining documents, given their length and the order in which they’ll be

screened, based on the times taken to screen the documents labeled thus far.

This prediction is used as the denominator in line 6.

Algorithm 4 Active Learning with Labeling Times

Input: Learning algorithm A, scoring function Q, unlabeled dataset U, la-
beled data sample L, time budget T

2: t← 0
β̂ ← least squares estimate using L {initial estimate of β coefficients}

4: ĥt ← A(L) {learn initial hypothesis}
while t < T do

6: d∗ ← argmax
d

Q(d)

ŷd(β̂)
over U

L← L ∪ d∗; U← U\d∗ {label selected point}
8: t← t + time taken to label d∗

ĥt ← A(L) {rebuild model}
10: β̂ ← least-squares estimate using L {recompute estimate of β coefficients

using labeled data}
end while

12: Output: Learned hypothesis ht

4.4.3 Experimental Results

In this section, we turn our attention to an empirical evaluation of the proposed

method. This is meant to demonstrate the advantage of taking into consideration

the predicted time-to-label in selecting examples to have annotated in active

learning.

To evaluate performance we use the weighted metric U19 (Equation 4.11,

which is a slight modification of Equation 4.8), presented in Sections 4.2 and

4.3.5. Briefly, we are interested in two quantities; the burden imposed on re-

viewers and the number of relevant citations correctly identified. Previously, we

have used the number of documents labeled as a measure of the former; here we

use the actual labeling time, which we have collected. The sensitivity reflects the

total proportion of ‘relevant’ instances in the pool identified, taking into account

the data with which the model was trained. This is a subtle but important point:
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for example, if an active learning querying strategy consistently selects for label-

ing relevant documents, it is effectively ‘rewarded’ for this behavior. Note that

this is not the same as testing on training data; we do not attempt to predict

the labels for documents included in the training set. Rather, we are quantifying

the fraction of relevant documents correctly identified using a particular strat-

egy, regardless of whether these documents were manually labeled relevant or

were correctly predicted to be relevant by the classifier: this is appropriate for

finite-pool scenarios. Note that without using any machine learning techniques,

both the burden and sensitivity are 100%, as all relevant citations are identified,

at the expense of the reviewers manually perusing all of the citations. Formally,

we have:

Uλ =
λ · sensitivity + (1− workload)

λ+ 1
(4.11)

where the measure of the workload, i.e. the annotation time, is assumed to be

normalized to fall in the range [0, 1]. We again use λ = 19, as was elicited from

a project lead for a specific systematic review (Section 4.2; (165)).

We compare the strategy of taking into account the predicted time it will take

label a document when selecting examples with a strong baseline strategy that

we have previously shown to outperform random sampling (165). Figure 4.14

plots U19 against the number of instances labeled, i.e., the size of the training set

used to induce the classifier. In this case, we quantify workload by the number

of documents that must be screened by a reviewer. This includes the number

of labeled documents and the number of documents predicted to be ‘relevant’

by the induced model, because these will need to be screened, whereas those

documents that are designated ‘irrelevant’ by the classifier need not be screened.

Given this result, we use our previously developed active learning strategy, rather

than random, as our baseline.

To measure workload, we would like to use the actual time spent screening

citations, rather than the raw number of documents screened. This is a bit

tricky, however, because the time it will take to screen a particular citation is at

least partially a function of the order in which it is screened (see Figure 4.11).
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Figure 4.14: Classifier performance of active learning and passive learning.

Thus we cannot simply use the raw observed screening times in our experiments,

because those times make sense only when the documents are labeled in the order

in which the reviewer originally screened them. Therefore, to calculate the time

spent labeling a citation for our experiments (line 8 in Algorithm 4) we use an

order-adjusted time.

Denoting the raw observed time taken to label a document d by td, we have:

rd = ŷd(β)− td, where here we use the original order in which d was labeled for

n (see Equation 4.10). Then rd is the residual time taken to screen a citation,

unaccounted for by our model. We then recompute ŷd(β), setting n equal to the

number of documents labeled thus far in the ongoing experiment, and subtract

from ŷd(β) the residual, rd.

There is one more factor that complicates our evaluation; in addition to

totaling the time spent labeling, we must take into account the amount of time

it will take to label the documents that were predicted to be relevant. However,

the ‘true’ annotation times for these documents will be partially contingent on

the order in which they are screened. To eliminate this issue, we first sort all

of the documents classified as ‘relevant’ by the model in descending order of

length, and then simulate labeling them in this order. Finally, we compute a

normalization constant for workload, because it is expected to fall between 0 and
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1, as follows: sort all of the documents in descending order of document length,

and sum the (simulated) time taken to label them in this order.

To recapitulate, we quantify performance using the Uλ metric, which is a

weighted mean of the two quantities of interest: yield and burden. The former is

the fraction of relevant citations correctly identified, the latter is a measure the

total reviewer workload. In this case, we quantify workload by the total labeling

time, which includes the time taken to label the training set, as well as the time

taken to screen the citations categorized as ‘relevant’ by the classifier. The λ in

this case was elicited from a reviewer, as we described above (see also (165)). A

final note on evaluation: because we have extreme ‘class imbalance’, i.e., there

are far fewer relevant than irrelevant citations, we under-sample the majority

class of irrelevant citations before training our classifiers for evaluation. In other

words, we remove irrelevant citations from the training set at random until there

are an equal number of irrelevant and relevant citations. This strategy has been

shown to be effective in mitigating the effects of class imbalance (see Chapter

2).1

We compare three active learning strategies, described as follows:

• greedy: This strategy greedily selects for labeling the most promising

document according to the dually-supervised active learning strategy we

introduce in the following chapter (165). We use this as our ‘base’ active

learning strategy for all three strategies, but any active learning strategy

could be used in its place. The particular active learning criterion is not

our focus here.

• predicted time: This method divides document scores (again a function

of the labeled terms therein; see Chapter 5 for details) by the predicted

time it is going to take to screen them, based on the regression model

described in Section 4.4.1 and the current estimate of β, β̂. This is the

strategy we are proposing be used in practice.

• true time: This is the same strategy predicted time, except that it

1We did not bag here, as this work was done prior to our work regarding bagging classifiers
induced over undersampled datasets. We are confident that all of the conclusions here hold in
the bagged case, as well.
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Figure 4.15: Empirical results. In both plots, the white bar corresponds to the
greedy strategy, the light grey bar to the predicted time strategy, which nor-
malizes by the predicted time-to-label, and the dark grey bar to the true time
strategy, which also normalizes by the predicted time-to-label, but uses the ‘true’
β coefficients in doing so (see text).

uses the true coefficients, β, as learned over the entire time series. This

approach is therefore ‘cheating’, because it uses coefficients learned over

data that wouldn’t be available during active learning. The idea is to see

how this compares to using the predicted time approach, which uses an

estimate of β.

Note that all three strategies essentially follow Algorithm 4. The key differ-

ence is line 6; the greedy strategy does not normalize by anything, the pre-

dicted time strategy uses β̂, as shown in the algorithm, while the true time

variant uses β in the denominator.

We use the proton beam (157) dataset for experiments (Table 2.2). Recall

that this dataset comprises 4,751 citations, of which 457 the reviewer labeled as
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relevant, i.e., retrieved in full-text.1 Unfortunately, this is the only dataset for

which we currently have recorded screening times, and thus is the only dataset

we run experiments over.2

Our experiments were conducted as follows. We allotted six hours for (sim-

ulated) labeling, and evaluated performance every hour. We take the most re-

cently reported performance at each check-in point, i.e., on the hour. All results

are averaged over ten independent runs in this way. This experimental frame-

work matches our scenario: we are assuming that we have a fixed amount of

time to annotate a corpus, and want to evaluate our performance with respect

to categorizing this set of documents under the time (equivalently, budget) con-

straints.

Figure 4.15a plots the average cumulative number of examples that were

labeled using each of the three strategies at the end of each hour. The error

bars for the predicted time strategy show the standard deviations at each

time point; the other two querying strategies are deterministic. It is reassuring

that both strategies that take time into consideration are indeed able to have

the reviewer label more citations in the same amount of time, compared to the

greedy strategy. Interestingly, using the predicted time approach often results

in acquiring more labels than when the true time strategy is used. We suspect

that this is because the time prediction model learned online is ‘pessimistic’,

in that it tends to predict that documents will take longer to label than they

actually do. This is likely because of bias in the documents for which labels

are requested during active learning (over which the time prediction model is

subsequently induced); these tend to be difficult, and thus the ‘true’ labeling

time is higher than it would be if an i.i.d. sample were used.

The average performances of the respective strategies at each time point are

shown in Figure 4.15b. The error bars are standard deviations. Note that even

1We have previously used this dataset with labels from a different reviewer, who screened
this data before the abstrackr tool was developed. We had a colleague re-screen them in
order to test our tool; the class distribution breakdown is thus slightly different in this case
than in our previous work.

2Technically, we have additional datasets that have been collected via the abstrackr system
introduced in Chapter 6, but we are not using these in methodological work because we want to
eventually perform a large-scale empirical analysis over these datasets, and to ensure validity
it is important that the datasets involved in this evaluation are not used during development.
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the deterministic querying strategies have standard deviations because we have

to under-sample the majority class (irrelevant citations) to mitigate the effects

of the severe class imbalance, as described above. The first thing to note is that

both strategies that take time into account outperform the greedy strategy at

all points after the first hour. It is intuitive that taking the ‘long-view’ strategy

should only pay off after some sufficient amount of time has passed. The greedy

strategy (almost by definition) will rapidly achieve good performance, but will

quickly exhaust its budget. On the other hand, time-sensitive strategies pay

off by being prudent in their example selection; the aggregate benefit of this

strategy takes some time to manifest.

It is also encouraging that our predicted time strategy, which learns to

predict how long it’s going to take to label citations online (i.e., during active

learning), performs comparably to the true time strategy, which uses the ‘true’

model coefficients β, as learned over the entire labeled dataset. This is in con-

trast to previous work (146) in which the predictive model was not sufficiently

accurate to achieve the same performance as when the true times were used. It

is possible that our incorporation of the annotator learning rate, i.e., the num-

ber of documents labeled prior to the document for which labeling time is to be

predicted, accounts for the success of our approach.

4.5 Conclusions

We have presented novel active learning methods for real-world scenarios that

relax the unrealistic assumptions often made in active learning. Such methods

are necessary if active learning is to be useful in real-world tasks.

More specifically, in Section 4.3, we presented the problem of Multiple Ex-

pert Active Learning (MEAL) and outlined the difficulties therein. We pre-

sented a novel strategy for MEAL that relies on the participating novice labelers

to indicate which examples are difficult, allowing the strategy to best exploit

experienced (and expensive) labelers. Further motivating this approach, we pro-

vided preliminary evidence that automatically predicting which instances are

difficult is a hard task. Moreover, we provided evidence that novice reviewers
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have the necessary meta-cognitive skills to assess which instances they are likely

to mislabel. Our meta-cognitive strategy out-performed strong baselines, includ-

ing a previously proposed approach to MEAL, on both sentiment analysis and

biomedical citation screening tasks.

We proposed a model for predicting the time it will take an expert to label

a given example. We showed that taking this time into consideration during

active learning can improve performance. Specifically, we demonstrated that

normalizing the active learning score assigned to an instance by the predicted

time it will take to label it results in a better performing system. We presented

a simple spline regression that incorporates document length and the order in

which a document is labeled as predictive variables. The spline serves as a simple

model for the annotator’s learning rate. The coefficients for this model can be

learned online, as active learning is ongoing. We showed that using this ‘return

on investment’ approach results in better performance in the same amount of

time, compared with the commonly used greedy active learning strategy.
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Dually Supervised Active

Learning

In Chapter 3, we introduced the dual supervision paradigm, which exploits la-

beled features (e.g., in text classification, words or n-grams associated with a

specific class) in addition to standard instance labels. In Chapter 4 we then

reviewed the active learning paradigm and proposed methods to extend the

framework for more realistic scenarios. In this chapter we combine these two

approaches by exploiting labeled features during active learning. In particular,

we use the external knowledge captured by such features to guide the active

learning process, specifically by using them to inform the active learning scoring

function Q. Dual supervision naturally lends itself to interactive techniques: ex-

perts might, for example, want to ‘tell’ the model about words that seem to be

confusing the classifier, or they may want to provide Information Retrieval-style

feedback regarding the class of primary interest.

There is an additional advantage to guiding active learning with labeled fea-

tures in the context of imbalanced datasets. Because we assume that the experts

know terms that are associated with the minority class a priori, this knowledge

is external to the points selected for labeling thus far. Exploiting this supervi-

sion to inform for which instances labels are requested may thus mitigate the

effects of the sample selection bias inherent to active learning. In particular, this

external knowledge may help to discover disjunctive sets of minority instances,

thereby sidestepping the ‘missed-cluster’ effect (139, 165). We will revisit this
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issue in Section 5.2. We note that parts of this chapter appeared in the Proceed-

ings of the 16th ACM SIGKDD conference on Knowledge Discovery and Data

mining (KDD 2010) (165).

5.1 Related Work

Before developing our own dually-supervised active learning method later in this

chapter, we first review existing strategies in this vein.

5.1.1 AL with Labeled Features

We first review work on active learning with labeled features only, i.e., without

any instance labels. Extending the generalized expectation (GE) framework for

learning from labeled features, Druck et al. (58) proposed an active learning

strategy for labeling features. Generalized expectation criteria – discussed in

Section 3.1 – is a framework for incorporating arbitrary prior expectations into

parameter estimation (112). Druck et al. (58) developed a pool-based feature

approach to selecting features for an expert to label, analogous to a standard

pool-based AL algorithm selecting instances for labeling.

In conjunction with GE criteria, they use a conditional random field (CRF)

(95) as their underlying probabilistic model, though any generative model may be

used in its place. They estimate the parameters of the CRF in a semi-supervised

way that incorporates the provided feature information, as proposed by Mann et

al. (109). As in (57), they add constraints to reflect the distance (KL divergence)

between the current model’s predicted feature-label distributions and the a priori

expected distributions, as provided by the expert. In standard active learning

one must specify the Q function that effectively ranks unlabeled instances with

respect to the benefit expected should their labels be acquired; In Druck et al.’s

case this query function performs a similar ranking over features, rather than

instances.

Druck et al. (58) consider a few such feature-query functions. They empha-

size that this task of selecting features for the expert to label differs from that

of feature selection: in the former one looks to select features for which expert
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feedback will assist the model, whereas in the latter one is specifying the features

to be included in the model. Note also that a necessary extension of the pool-

based framework for feature feedback is a skip option – essentially allowing the

user to label a feature as being uninformative – because many features will have

no meaningful class association. Druck et al. propose a few different uncertainty

sampling based strategies wherein the learner attempts to pick for labeling the

feature about which feedback will provide the largest decrease in model uncer-

tainty. One could pick the feature with the highest expected information gain

directly, but estimating this is computationally intractable, as it would involve

computing expectations over all instances for all features. Instead, the authors

propose scoring features as a function of the Total Uncertainty (TU), defined as

follows:

φTU (fk) =
∑

i

∑

j

fk(xi, j)H(p(yj |xi; θ)) (5.1)

where H denotes entropy, i and j index instances xi and classes yj ,
1 respectively,

θ is a vector of model parameters and the query is with respect to a feature k.

Further, fk(xi, j) is an indicator function which is 1 if feature k is in instance xi at

position j. The problem with this query function is that it will disproportionally

select features whose values frequently assume 1, i.e., those that often appear

in instances. To mitigate this problem, Druck et al. (58) propose scaling φTU

by the corresponding feature’s count, Ck. However, they note that just dividing

φTU by Ck would result in the opposite: the function would always select rarely

occurring features. They thus propose the compromising heuristic shown in

Equation 5.2, which they call Weighted Uncertainty (WU).

φWU = log(Ck)
φTU (fk)

Ck
(5.2)

Druck et al. (58) proposed a few other query function as well, but WU is

the best performing of the bunch. Their method outperforms passive learning

with features and traditional active learning over instances in simulated user

1Recall that here yj is a feature, rather than instance, label.
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experiments (i.e., using a feature oracle) over two sequence labeling tasks.1 They

also experimented with real users, and introduced a novel grid interface for

labeling features. Notably, they show that feature annotations are cheaper than

instance annotations. Our scenario is different from the one explored in the

GEC case: we assume experts know beforehand a list of features that correlate

with classes. Thus we are uninterested in requesting labels on particular features

during AL. Furthermore, we would like to exploit features and instances dually,

as opposed to the approach delineated above, which learns from features alone.

The framework of GEC is general enough to accommodate dual supervision

with a suitable specification, but we did not pursue this route. We now turn

to methods more relevant to our scenario, i.e., dually-supervised methods that

simultaneously exploit instance- and feature-labels.

5.1.2 Dually Supervised AL

In early work on active dual supervision, Godbole et al. (69) emphasized the

human-computer interaction aspect of the process (69). They exploit term-level

labels by adding single-feature psuedo-instances, similar to Raghavan et al.’s

approach (130, 131). They present terms likely to be correlated with a given class

to users interactively, allowing them to edit these if they so choose. In similar

work, Stumpf et al. (152) carried out extensive user studies investigating ‘rich’

forms of user interaction with machine learning systems. In both cases allowing

humans to impart supervision beyond instance labels substantially improved

system performance, even when simple dual methods were used.

Raghavan et al. (131) outlined an augmented general active learning protocol

that allows the model to select features (in addition to instances) for the expert to

label during each iteration of AL. They then incorporated this elicited domain

knowledge into the model during training. They first experimented with an

idealized feature-oracle over benchmark text classification corpora. This allowed

them to assess whether feature-feedback is at least theoretically helpful. They

allowed the feature-oracle to pick the best k features, with respect to information

1Sequence labeling tasks are structured learning problems in which instances come sequen-
tially; they are common in natural language processing and genetics, for example.

161



5. DUALLY SUPERVISED ACTIVE LEARNING

gain, at the outset of AL and then performed traditional uncertainty sampling

over the pruned k-dimensional labeled feature space.1 Their findings confirm

that labeled features indeed can improve model performance; AL over the pruned

space outperformed traditional uncertainty sampling over the original un-pruned

feature space on five benchmark datasets.

Raghavan et al. (131) next investigated whether human labelers could, in

practice, approximate the feature-oracle, thereby achieving similar gains. To

this end, they obtained labeled features from human experts a priori (i.e., non-

interactively, at the start of AL) with which to experiment. They simulated in-

teractive feature feedback using these feature relevance labels during AL. They

called this procedure of issuing label requests for both features and instances

tandem learning. These labeled terms were then incorporated via a simple fea-

ture scaling technique. Specifically, they scaled the labeled features by an order

of magnitude (10x) relative to the unlabeled features in the vectors representing

each instance. Their experiments with this simulated ‘human-in-the-loop’ setup

were promising; they achieved results comparable to the performance observed

using the feature-oracle methodology. Raghavan et al. have since proposed

additional tandem learning methods (130).

Attenberg et al. (11, 12) proposed a general framework for the task of se-

lective data acquisition. They built upon the Pooling Multinomials method

reviewed in Section 3.1, but the proposed methods would conceivably work with

any dually supervised learner. The basic idea is to interleave requests for feature

and instance labels, picking both cleverly. They first consider the obvious anal-

ogy to uncertainty sampling as applied to features. This method would request

labels for features about whose class association it is least certain. However,

Attenberg et al. (11) point out that this results in querying the expert for la-

bels on noisy, non-discriminative features, thus wasting valuable expert time.

Somewhat counter-intuitively, they go on to demonstrate that one of the most

effective feature-querying strategies is to request labels for those features whose

polarity the model is most certain about, the exact opposite of uncertainty sam-

1They also experimented with conducting the feature queries after AL was finished, with
comparable results.
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pling. The intuition is that this works because the expert will likely label the

feature/word as being indicative of a class, whereas in the case of noisy features,

e.g. ‘the’, the expert simply labels them as uninformative. They also propose

a querying method based on the expected utility of a given feature, in terms of

model improvement. They demonstrated that this utility method outperforms

baseline feature-querying strategies.

In a similar vein, Liang et al. (101) proposed a unified perspective for ac-

quiring heterogeneous forms of expert supervision. More specifically, they in-

vestigated techniques for simultaneously exploiting expert-provided constraints

and standard instance labels. The measurements model is similar to the Gen-

eralized Expectation Criteria method (57) in that it learns from probabilistic

expectations provided by the expert. The model cannot learn directly from dis-

crete feature labels, though one could conceivably coerce labeled features into

reasonable probabilistic constraints, as has been done in the case of GEC (57).

To unify these disparate forms of supervision, Liang et al. introduce the mea-

surements abstraction. A measurement is an expectation of a function defined

over the outputs of the unlabeled examples. For example, a measurement may

be a fully labeled example, a partially labeled example, or a constraint reflecting

a feature-label relationship. Their proposed Bayesian model then exploits all

measurements, including instance-labels, by maximizing the posterior probabil-

ity with respect to these. Starting with this as a learning model, Liang et al.

(101) then addressed the question of efficient acquisition of additional supervi-

sion. They proposed a decision-theoretic approach, in which measurements that

maximize expected utility are taken at each step. Roughly, utility here is the ex-

pected improvement in model performance achieved by acquiring a measurement

less the cost of taking it.

We have summarized existing work on dually-supervised interactive learning.

We propose our own strategy for this, CoFeature, in Section 5.3. But we first

pause to consider why and when feature-level supervision might help inform

active learning, particularly in imbalanced scenarios.
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5.2 Hasty Generalization, or, When Might Dual Su-

pervision Improve AL?

As discussed in Chapter 4, the citation screening task naturally fits within the

pool-based active learning paradigm, in which the model requests labels for the

unlabeled examples likely to be most helpful in learning the target concept.

We initially experimented with active learning over a few citation corpora from

previously conducted systematic reviews (Table 2.2), using standard uncertainty

sampling methods with SVMs (158). In these experiments, uncertainty sampling

resulted in models with high accuracy but poor sensitivity, compared to models

trained on randomly selected data (168). This is obviously undesirable given the

cost asymmetry present in the citation screening task discussed at length in the

preceding chapters. In this secction we address the question of why uncertainty

sampling might induce models with poorer sensitivity. We then discuss how this

problem can be mitigated by exploiting labeled features to guide AL.

Uncertainty sampling methods focus on refining the current decision bound-

ary (122). The idea is to first establish a rough approximation to the ideal

decision boundary and then sequentially requesting labels for examples nearest

it. Intuitively, this strategy exploits the labeler by ignoring examples whose

labels are unlikely to move the decision boundary, thus expediting the training

process. However, this strategy implicitly assumes that the initial approximation

to the decision boundary is reasonable in the sense that as the learner continues

requesting labels, the learned boundary will approach the optimal boundary.

This assumption is violated in the case of disjunctive concept clusters (16, 139),

as uncertainty sampling may continue to request labels along the initially discov-

ered boundary, ignoring as-yet undiscovered partitions. We call this the problem

of hasty generalization.

The most relevant existing work with respect to addressing hasty general-

ization is that of Schütze et al. (139), in which they discuss practical issues in

active learning for text classification. They observed a phenomenon similar to

that just described, which they referred to as the missed-cluster effect. They

found that this was problematic in real world active learning for text classifica-
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tion, particularly when there is class imbalance, confirming our own independent

observations.

Other work (16, 122) has addressed this problem more generally as a trade-

off between exploration (e.g., random sampling or via the Kernel Farthest-First

heuristic (16)) and exploitation (e.g., uncertainty sampling) during active learn-

ing. The strategies proposed in these works decide at each iteration in AL

whether to explore the space or to exploit what is already known. Typically

this decision is taken stochastically, with the respective options weighted by the

estimated likelihood of their being fruitful based on previous decisions. Thus

at the outset of AL we are more likely to explore at each step, whereas once a

large amount of training data has been acquired we are more likely to exploit.

This approach fits naturally in the one-armed bandit framework, in which we

are to select an arm to pull at each step that will maximize pay-off (16). The

problem with such explore/exploit approaches in the more specific case of im-

balanced data is that they are greedy insofar as they explore with probability

proportional to how successful exploration has been thus far. These methods

therefore tend to regress to standard active learning in the case of imbalance,

because exploration will only rarely be fruitful, specifically on those rare occa-

sions that a minority-class instance is selected. We note that He (78) has also

recently proposed exploiting labeled features for rare class detection.

Figure 5.1: The left and right figures show the examples for which the random
sampling and Simple (see 4.1) strategies requested labels, respectively. In both plots
the entire pool of examples (U, at the start of active learning) is shown; examples
that are darkened are those for which a label was requested by the corresponding
learning algorithm.

The problem of hasty generalization is perhaps easiest understood with a
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toy example. Consider the two-dimensional target concept depicted in Figure

5.1. Here the instances represented by squares comprise the minority class, of

which there are two clusters (one in the lower left-hand corner, the other in the

upper-right quadrant). We simulated AL over this data using an SVM with an

RBF kernel and two different learning strategies: passive, which randomly selects

examples from U for the expert to label, and uncertainty sampling via Simple

(158). The examples selected for labeling by these two algorithms are darkened in

the two sub-plots, Figures 5.1a and 5.1b, which correspond to random sampling

and Simple, respectively. We allowed the learners to request labels for 25% of

the total data.

Figure 5.1a shows the examples that were selected using the random sampling

strategy. In this case, the learner was trained on a representative, i.i.d. sample

of the data, and discovered examples from each of the two minority clusters.

However, random sampling was clearly inefficient, in the sense that it queried

for the labels of many irrelevant examples, thus wasting our simulated expert’s

time. To expedite the training process, and to induce a more accurate model,

one might appeal to uncertainty sampling here. But hasty generalization is

a potential pitfall in this approach. This is illustrated in Figure 5.1b, which

shows the examples for which Simple requested labels. The training examples

selected via uncertainty sampling are visibly biased, clustering around the initial

approximation to the decision boundary in the lower left quadrant. The learner

completely misses the upper-right cluster of squares.1 The active learner hastily

generalized from the examples it initially encountered, and will subsequently

misclassify squares in the missed cluster as circles.

The question, then, is: how can we exploit the expert via AL when we have

an imbalanced class distribution and asymmetric costs? In the following section,

we propose using labeled features to achieve this aim. In particular, labeled

features – n-grams, in the case of text classification – that are known to the

expert at the outset of AL can be used to circumvent the problem of hasty

generalization by combining a priori knowledge with the model induced over the

1Note that labels for some circles (but no squares) in the upper-right hand corner were
requested due to our use of the RBF kernel.
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current set of labeled instances. Indeed, Shütze et al. (139) explicitly suggested

that using domain knowledge may be a fruitful way of avoiding the missed-cluster

effect. Consider the simple example above. If the expert knows that minority

instances should exist somewhere in an upper right region of the feature-space

(the interpretation of this, of course, would depend on the semantics of the

features in the given task) then this could be used to guide the model to discover

both clusters of minority instances.

5.3 CoFeature: A Co-Testing Approach to Dually

Supervised AL

We now present a novel active learning strategy that exploits domain knowledge

provided by the expert in the form of labeled features. We extend this model

via a variant of the CW-SVM presented in Chapter 3 for situations in which

the expert can provide ranked labeled features. We show that our methods

outperform existing AL strategies on three systematic review datasets.

One way of looking at labeled features is as a distinct view of the data. A

view is a particular feature space used to represent a given dataset. Blum and

Mitchell (25) demonstrated that multiple, redundant views can be exploited in

supervised learning through the Co-Training paradigm. Muslea et al. (119)

extended this method for active learning via their Co-Testing strategy, which

works as follows. Suppose we have two views, V1 and V2. Learn two hypotheses

H1 and H2 over these views, respectively. Now define contention points as those

unlabeled examples about whose labels H1 and H2 disagree, and request a label

for one of these points. This approach is appealing because if these two models

disagree on a particular example x, then by definition the label for x must be

informative, as at least one of the two models is currently incorrect. Note that

Co-Testing is a specific case of Query by Committee (66), reviewed in detail in

Section 4.1.

We propose building a simple odds-ratio model over the expert-provided

labeled features in tandem with a linear-kernel SVM over a standard bag-of-

words (BOW) representation of the corpus. For the odds-ratio model, we use an
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‘odds-ratio’ model calculated over labeled term counts, i.e., the ratio of positive

to negative terms in a document. In particular, suppose we have a set of positive

features (i.e., n-grams indicative of relevance), α, and a set of negative features

β. Then, given a document d to classify, we can compute a coarse likelihood of

d belonging to the positive class as:

∑

w+∈α
Id(w

+) + 1

∑

w−∈β
Id(w

−) + 1
(5.3)

where Id(w) is indicator function which is 1 if w is in d and 0 otherwise. Note that

we add pseudo-counts to both the negative and positive sums to avoid division

by zero. The direction of this ratio gives a class prediction and the magnitude

of the ratio gives a confidence.1 For example, if d contains ten times as many

positive terms as it does negative terms, the class prediction is + and a proxy

for our confidence is 10.

We can now use this model for Co-Testing as follows. First, generate the set of

contention points, i.e., those unlabeled examples about whose class membership

the SVM model induced over the BOW representation disagrees with the labeled

feature classifier defined above. Of these, select for labeling the example x with

the largest ratio. In this case the SVM model predicts that x belongs to one

class, but the labeled features present in x strongly suggest that it belongs to the

other. The hope is that such examples will be informative to the model, given the

disparity between the shallow “semantic” classifier that uses labeled features and

the more nuanced “black-box” SVM method induced over the instances labeled

thus far. Hopefully this strategy will avoid the problem of hasty generalization

because it relies on information external to the current SVM model to select

which instances are to be labeled (of course, this will depend on the structure of

the minority points and the labeled-feature information provided). Once there

are no contention points remaining, we may fall back on standard uncertainty

sampling; at this point the SVM has likely acquired training data from – or else

1To ensure that the magnitude is symmetric in the respective directions, one may either
flip the ratio such that the numerator is always larger than the denominator, or one may take
the log of the ratio.
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is already correctly classifying – points comprising clusters of minority instances,

assuming the expert provided labeled features that correspond to said clusters.

The simple odds-ratio style model presented above assumes that the model

has access to only binary feature-labels. But, as discussed in Chapter 3, in

many cases the expert may also be able to provide a ranking over features,

specifying which are more or less representative of class membership, relative to

one another. Encoding such fine-grained information is an attractive proposition

because it exploits the domain knowledge provided by the expert to induce a

better generalized model, again thereby hopefully thwarting the aforementioned

problem of hasty generalization. We can exploit such ranked-feature information

via the constrained-weight SVM formulated in Chapter 3.

More specifically, we can use a CW-SVM (induced over ranked features and the

instances in L) as the second model in the Co-Testing framework. Note that

in both cases we use standard SVM as V1, i.e., the classifier ultimately respon-

sible for making predictions. To use the CW-SVM, we must specify functional

constraints between features of different ranks (see Section 3.2.2.4). Here we

assume that the magnitude of the parameters associated with labeled features

grows exponentially with their rank as the following Equation

f(x, y) = e−κx − e−κy (5.4)

where x and y are adjacent ranks and κ is a parameter reflecting the magnitude of

separation we expect between ranks. The intuition behind using this exponential

function is that the presence of the highest ranked terms in a document are

significantly more indicative of its relevance (or irrelevance) than lower ranking

terms. This is thus the exponential variant of the CW-SVM defined in the

Quadratic Program specified by Equations 3.21 through 3.25. The assumption

to use the exponential ranks was made in part due to informal discussions with

the our expert regarding the relative importance (in his view) of certain terms

versus others. As in the simpler version of the CoFeature method, this classifier

is used as a view to select contention points with the standard SVM model, i.e.,

as V2.
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5.4 Experimental Results

We first present experimental results using the simple odds-ratio based Co-

Testing approach proposed above, which we will refer to as just CoFeature. We

run experiments over three systematic reviews for which we were given labeled

terms by the reviewers. These datasets are summarized in Table 2.2. We com-

pare our approach to random sampling, uncertainty sampling via Simple, and

uncertainty sampling over the labeled-features space as proposed by Raghavan

et al. (131). We also present results using the CW-SVM method as the second

view, rather than the odds-ratio model, over the proton beam dataset.1

5.4.1 Experimental Setup

As before, evaluation is carried out with respect to the metric of interest, i.e., U19

(for details see 4.2). Briefly, this metric emphasizes sensitivity to the minority

class of “relevant” citations, as is appropriate in our scenario. We note that

Simple outperforms our method on all datasets with respect to accuracy, but

this is essentially meaningless in our scenario due to the low prevalence of the

relevant instances. This again illustrates the necessity of using the appropriate

metric for the task in evaluation.

All classification is performed using SVMs with linear kernels, as they have

been shown to perform well over high dimensional text data (84). All SVMs

are induced over a feature space comprising a binary bag-of-words encoding of

concatenated citation title, keywords and abstract text, save for the method

of Raghavan et al., which operates exclusively in the labeled terms space only.

Evaluation is assessed over the as-yet unlabeled instances remaining in U, as

described in Section 4.2.2

Our experimental setup is as follows. We instantiate the four learners and

give each of them labels for the same two ‘seed’ citations; one “relevant” and

one “irrelevant”. We then allow each learner to request five labels per round

1We only had expert-provided ranked labeled features for this dataset at the time the
experiments were conducted.

2We tune the C parameter via grid-search prior to evaluation over the training data. We
modify the search criteria to reward good performance with respect to both sensitivity and
specificity, rather than overall accuracy, for all learners.
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Figure 5.2: U19 over the COPD dataset. Our CoFeature approach outperforms
all baseline methods.

of active learning. Every 25 labels, we evaluate the learners as described above

and report results. Due to the severe class imbalance in our task, we under-

sample the majority class (at random) to make the class distribution uniform

prior to building the classifier used in evaluation: see Chapter 2 for an in-depth

discussion of this issue.1 All reported results are averages over ten independent

runs.

5.4.2 CoFeature Results

Results over the COPD dataset are shown in Figure 5.2. Recall from Table 2.2

that COPD is a smaller dataset than proton beam, comprising 1,601 citations,

196 of which are relevant. We show performance for up to 800 labeled training

examples. We were given 22 labeled n-grams, fifteen positive and seven negative.

Our CoFeature method maintains higher U19 until about the 500 label mark, at

which point Simple performs comparably.

Figure 5.3 displays results over the micronutrients dataset. There are 4,010

citations in this dataset, 258 of which were found to be relevant. This is an inter-

1We do not bag here because these experiments pre-date our work on bagging learners
induced over balanced datasets. But because bagging is primarily a variance-reduction strategy,
we are confident that the conclusions drawn hold for ensembles of undersampled classifiers, as
well, since these are based on point estimates.
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Figure 5.3: U19 over the micronutrients dataset. Our CoFeature approach out-
performs all baseline methods.

CW-SVM

Figure 5.4: U19 over the proton beam dataset. Our CoFeature (and CW-SVM)
approaches outperform all baseline methods.
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esting dataset because the expert provided a preponderance of positive n-grams:

47 versus only two negative terms. The CoFeature strategy again dominates the

other methods.

Figure 5.4 shows results over the proton beam dataset: these include results

using Co-Testing with the CW-SVM method, as well. As shown in Table 2.2,

there are 4,751 documents in this dataset, 243 of which are labeled as positive

(relevant). We follow the experimental procedure delineated above. The reviewer

provided us with 43 ranked positive and 26 ranked negative features. There

were five discrete groups, or sets, of ranked positive terms. The terms in the

most positive group were thus five times as indicative of a relevant citation as

those in the least positive group. The expert also provided three sets of ranked

negative terms. We show results for up to 1,000 labels, at which point the

performance of the classifiers asymptotes. The first significant observation is

that both the CoFeature and CW-SVM Co-Testing based approaches dominate

baseline methods until ∼ 600 queries, at which point Simple catches up. The

second important observation is that the CW-SVM based method is able to

exploit ranked features in early active learning rounds to outperform CoFeature,

suggesting that there may be some benefit in exploiting rankings of features

during AL, especially when there are very few labeled instances.

As formulated in Chapter 3, the CW-SVM requires specifying values for

several parameters. For this particular experiment κ = 0.1, c1 = 0.75, c2 =

0.1, c3 = 0.2. As each weight parameter was bounded between the range −100 ≤

wi ≤ 100 to cover 7 rankings, we selected user defined values that balanced

expected gap sizes with empirical error without significant parameter tuning

due our limited data setting. With these settings, the CW-SVM method slightly

outperforms CoFeature from 50-150 and 200-300 queries. Our results with other

parameter settings show that if we set the parameters to bias the CW-SVM to

heavily favor domain knowledge, then we see large gains during early rounds, but

performance plateaus more slowly. If, on the other hand, we set the parameters

to bias the CW-SVM toward minimizing empirical error then we observe a less

pronounced early jump with a steadier performance increase. We thus conclude

that the best use of rankings is to begin with a strong bias toward agreeing with
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the ranking and decrease this importance as labeling proceeds. Intuitively this

makes sense: as additional evidence accrues in the form of labeled instances,

prior information becomes less important.

5.5 Conclusions

We have presented the dually supervised active learning paradigm, which looks

to exploit labeled features during AL. This is a nascent area receiving an in-

creasing amount of attention in the literature, as evidenced by our review of

emerging work in this direction (Section 5.1). In Section 5.2 we discussed when

such external information may improve model performance, particularly in the

case of imbalanced scenarios. We presented a novel dually supervised active

learning strategy that extends the Co-Testing framework to exploit labeled fea-

tures in Section 5.3. We also incorporated our CW-SVM, presented in Chapter

3, to actively learn from ranked labeled features. We demonstrated that these

strategies outperform baseline active learning methods in Section 5.4.

We have now presented several methodological contributions that look to

improve machine learning in realistic application scenarios. In the next chapter

we will now turn our focus to the practical application of the methods we have

developed to our motivating task of citation screening for systematic reviews.
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Toward Modernizing the

Systematic Review Pipeline

In preceding chapters, we introduced methodological advancements that address

deficiencies in current state-of-the-science machine learning techniques when ap-

plied to real-world tasks. We have used the task of citation screening as our

motivating scenario throughout, but have thus far emphasized the broad appli-

cability of the proposed methods, i.e., we have considered the task primarily

from a machine learning, rather than a clinical research, vantage. In this chap-

ter we focus more specifically on the practical task of semi-automating citation

screening, the application of the developed technologies to this problem, and the

implications of this for the systematic review process. Portions of this chapter

have appeared in Genetics in Medicine (162), BMC Bioinformatics (168) and the

2011 Proceedings of the International Conference on Health Informatics (164).

We first report results from a realistic prospective evaluation of our semi-

automated approach when applied to the task of updating existing systematic

reviews in Section 6.1. We demonstrate that machine learning can indeed sub-

stantially reduce workload, without sacrificing thoroughness. In Section 6.2,

we then present our open-source, web-based software for citation screening, ab-

strackr, which provides a means of disseminating the machine learning methods

that we have developed in this thesis. In our view the step of deploying machine

learning technologies in order to actually make them useful to experts is too

often overlooked by researchers.
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6.1 Reducing the Workload Required to Update Sys-

tematic Reviews

A problem with systematic reviews is that their conclusions are sound with

respect only to the evidence available at the time the review was conducted.

Ideally, reviews would be updated each time new relevant evidence is published.

But it is estimated that more than half of the systematic reviews in the Cochrane

Library, a repository of high-quality systematic reviews, have not been updated

for at least two years (68). Furthermore, a recent survey of organizations that

produce and maintain systematic reviews suggests that at least half of existing

reviews are already out of date, limiting their utility (67). The main reason for

the staleness of reviews is the labor required to update them.

Here we demonstrate that the adoption of the proposed machine learning ap-

proach to semi-automating citation screening can eliminate a substantial amount

of the work involved in updating reviews, thereby saving time and human re-

sources, and ultimately increasing the likelihood that reviews are kept current.

The active learning methods we have developed are not applicable to the task

of updating systematic reviews due to the nature of the task. Because we are

updating an existing review, we have at hand many examples of relevant and

irrelevant papers; namely those citations screened for the original review. There

is thus no need to acquire additional training data.

In earlier work (168) we demonstrated that a variant of active learning can

reduce workload by half in the case of de novo reviews, without missing any

relevant citations, i.e., any of the studies found relevant at level-2 screening (see

Section 1.1) and thus ultimately included in the final review. This section demon-

strates the practical benefits of applying the undersampling/bagging method we

developed in Chapter 2 with respect to reducing the workload required to update

systematic reviews.

In practice we have found that using committees of classifiers induced over

different views of the data – the title, abstract and MeSH keywords1 – further

improves performance (168). To aggregate the predictions over these views,

1MeSH stands for Medical Subject Headers.
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Classifier

“Bagging”  
of votes

A nice title

A brilliant 
abstract 

some MeSH 
terms

Another title

[No abstract 
available]  

some MeSH 
terms

00000000000000000000000000000000000001000000000000000000000000000000...

00001000000000000010100000000000101000000000010000000000001000000000...

11100011101110000010100001100000001010000000110010101111100000100011...

text encoding

7 relevant vs. 4 irrelevant

Figure 6.1: We encode the titles, abstracts, and MeSH terms components of cita-
tions using the standard “bag-of-words” representations. We used an ensemble of
eleven base classifiers (squares) comprising three Support Vector Machines (SVMs,
circles), one per encoded component. White circles and red circles stand for SVMs
that classify their respective encoded components as relevant and irrelevant, re-
spectively. If at least one of the SVMs suggests that the citation is relevant, the
corresponding base classifier casts a relevant vote (white squares), otherwise it casts
a vote for irrelevant (red squares). The overall disposition is given according to the
majority vote of the ensemble of eleven base classifiers (here, relevant with seven
versus four votes). The proportion of votes for the “winning” disposition is a proxy
for the confidence of the classifier in its ultimate vote (here 7/11=0.64).

we take the simple approach of classifying citations as relevant iff any of the

committee members deems it as such. In summary, we bag eleven ensemble

classifiers, each induced over independently drawn balanced bootstrap samples

from the training set comprising the citations screened for the original review.1

This approach is described schematically by Figure 6.1; see its caption for more

details.

6.1.1 Datasets

We used four systematic review datasets to validate our approach. Three syn-

thesize genetic association studies, investigating Parkinson’s disease (PDGene;

http://www.pdgene.org(103)), Alzheimer’s disease (AlzGene; http://www.alzgene.

org (94)) and schizophrenia (SzGene; http://www.szgene.org(3)), respectively.

These are summarized in Table 6.1. The fourth is the Tufts Cost-Effectiveness

Analysis Registry (CEA Registry; https://research.tufts-nemc.org/cear4),

which summarizes information from published cost-effectiveness analyses. Cru-

1We do not use eleven for any special reason; it is just a reasonable committee size that has
worked well in the past. Initial explorations on previous datasets have suggested that beyond
this point, adding additional members does not much alter performance.
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Training set (inception – 2009) Update (validation) set (2010)
Dataset Size Included (%) Size Included (%)
PDGene 20,216 556 (2.8) 561 104 (19)
AlzGene 42,833 1287 (3.0) 7298 65 (0.9)
SzGene 25,804 1410 (5.5) 5381 179 (3.3)
CEA Registry 5114 2287 (44.7) 1015 79 (7.8)

Table 6.1: Training and update (validation) sets in the four systematic reviews.

cially, none of these datasets were used during the development of the machine

learning approaches that we have developed. Thus this evaluation truly is equiv-

alent to a prospective application of the semi-automatic approach.

The protocol and methods for our four datasets are available on their re-

spective websites. In contrast to typical systematic reviews, these address much

broader questions, and are updated on a weekly or monthly basis. For example,

the AlzGene review evaluates the strength of the association between Alzheimer’s

disease and genetic variations across the whole genome, whereas a typical sys-

tematic review would probably evaluate only a subset of such genetic variations,

e.g., in the APOE gene. Note that attaining perfect (100 percent) sensitivity

with semi-automated updating is much more difficult when all reported varia-

tions across thousands of genes are of interest rather than only APOE variations.

To simulate a prospective test of our semi-automated system, we segmented

each of the datasets into a training set, comprising all citations published through

12/31/2009 and an update (validation) set, composed of citations published be-

tween 01/01/2010 and 12/31/2010. This is equivalent to a prospective evaluation

of our semi-automated system throughout 2010.

For each dataset, we calculated the sensitivity and specificity of the classifiers

on the update set. The reference standard was whether a citation was ultimately

included in the systematic review or not during manual screening, i.e., whether

it passed level-2 screening. We report the number of citations that reviewers

would have needed to screen, had they been using the proposed semi-automated

system to update reviews in 2010, versus the number of citations they actually

screened. We assessed the variability of overall results by repeating all analyses

twenty times using different random number seeds.1 We arbitrarily considered

1While the training and test sets are fixed, recall that undersampling introduces random-
ness.
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Dataset TP FN Sensitivity (range) TN FP Specificity (range)

PDGene 104 0 100 (100, 100) 5011 501 90.9 (90.0, 91.1)
AlzGene 65 0 100 (100, 100) 6743 490 93.2 (93.0, 93.2)
SzGene 179 0 100 (100, 100) 4664 538 89.7 (89.2, 89.7)
CEA Registry 78 1 98.7 (98.7, 98.7) 680 256 72.6 (72.1, 73.0)

Table 6.2: TP: True positives (citations deemed relevant by the classifier and
included in the systematic review [upon full text review]); FN: false negatives (cita-
tions deemed irrelevant by the classifier but were included in the systematic review);
FP: false positives (citations deemed relevant by the classifier but were not included
in the systematic review); TN: true negatives (citations deemed irrelevant by the
classifier and were not included in the systematic review).

the first run as the main analysis, and report minimum and maximum results

from the other nineteen.

6.1.2 Results

In all three genetic topics the proposed semi-automated strategy correctly iden-

tified all citations that were included in the systematic reviews in 2010 (100%

sensitivity), and considered relevant only approximately 10% of the papers that

were excluded by the human experts (specificity of about 90 %). Had the semi-

automated system been used in 2010, the human experts would have needed to

screen only 605 (PDGene), 555 (AlzGene) and 717 (SzGene) titles and abstracts,

compared to the 5616, 7298 and 5381 citations they manually screened for the

three datasets (Table 3). This translates to reductions in labor of approximately

81, 92 and 87 percent, respectively.

In the case of the CEA Registry, the classifier missed only one eligible article

(sensitivity about 99 percent), and incorrectly considered relevant approximately

28 percent of the papers that were excluded by human reviewers in 2010 (speci-

ficity around 73 percent). Relying on the semi-automated system throughout

2010, researchers would have needed to screen only 334 out of 1015 citations

(a reduction in labor of approximately 67 percent). Upon re-review of the sin-

gle false negative, human experts deemed that this citation might also have

been missed by a novice human reviewer: only a single sentence in the abstract

suggests that a cost-effectiveness (or cost-utility) analysis might have been per-

formed, i.e., that it was indeed relevant.

All results were robust when we repeated the entire analysis an additional
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nineteen times using different random number seeds (recall that undersampling

introduces randomness into the induction process). No eligible papers were

missed in the three genetic topics, and the same eligible paper was always missed

in the CEA Registry. The specificity of the classifiers was nearly identical to the

main analyses (Table 6.2).

We have shown that machine learning methodologies can indeed reduce the

burden of updating of systematic reviews without sacrificing their comprehen-

siveness. Only a single citation out of the many dozens that were included in each

topic’s 2010 update would have been missed by the semi-automated method, and

this was a borderline case.1 This is directly comparable to the performance of

individual human screeners: in empirical explorations human experts missed on

average 8 percent of eligible citations (ranging from 0 to 24 percent) (61). To

minimize the likelihood of overlooking eligible studies, current recommendations

suggest using two independent screeners. Thus, computer assisted screening

could replace full-manual screening for both screeners, replace one screener, or

could be used in addition to both screeners to further increase the sensitivity of

the overall process.

We have thus demonstrated via a realistic prospective empirical evaluation

that machine learning can indeed be of practical use. This is welcome news,

but if such technologies are to be adopted in practice then tools must be made

available to the clinical researchers conducting the reviews. We next describe

our work on abstrackr, an open-source, web-based annotation tool for citation

screening that integrates our machine learning tools in a GUI-based tool for

conducting systematic reviews.

6.2 Putting it all Together: the abstrackr System

The data deluge in clinical science has motivated the development of machine

learning and data mining technologies to facilitate efficient biomedical research

(40, 168, 184). Despite the obvious potential of such methods and the con-

comitant academic interest therein, however, adoption of machine learning tech-

1Moreover, the one relevant citation that was missed belonged to the review for which we
had the smallest amount of training data.
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niques by medical researchers has been relatively sluggish. One explanation for

this is that while many machine learning methods have been proposed and ret-

rospectively evaluated, they are rarely (if ever) actually made available to the

practitioners whom they would benefit. In this section we describe the ongo-

ing development of an end-to-end interactive machine learning system at the

Tufts Evidence-based Practice Center (EPC). More specifically, we have devel-

oped abstrackr, an open-source, web-based tool for the task of citation screening

for systematic reviews. This tool provides an interface to our machine learning

methods. The abstrackr program thus provides a means of deploying the novel

machine learning techniques described in this thesis.

abstrackr (accessible at http://abstrackr.tuftscaes.org; source code avail-

able via GitHub https://github.com/bwallace/abstrackr-web) is a collabo-

rative (i.e., multiple reviewers can simultaneously screen citations for a review),

web-based annotation tool for the citation screening task. It supports interactive

learning protocols such as active learning and dual supervision, in addition to

other forms of annotation, such as note-taking (see Figure 6.2). Ultimately, our

goal in developing abstrackr has been to create a practical means of deploying

the machine learning technologies that we have developed to researchers under-

taking systematic reviews, i.e., screening citations. But because we have not yet

conducted a large-scale empirical evaluation of our methods for semi-automating

the citation screening process, abstrackr is currently primarily used as an anno-

tation tool. (Reviewers will not trust the system to screen citations on its own

without such a large-scale empirical validation).

Even without the machine learning components, abstrackr has been found

useful by the Tufts Evidence based Practice Center (EPC), where it is currently

being routinely used. Moreover, the active learning elements are already being

regularly used to order citations with respect to their likelihood of being rele-

vant, expediting the citation screening process. This tedious screening task was

previously being conducted by printing out reams of abstracts to read one-by-

one while keeping track of screening decisions – labels – in a spreadsheet (see

Figure 1.2). As one might imagine, this was a messy and generally unenjoyable

endeavor. abstrackr also provides a digital paper trail, and is helpful in tracking
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and managing workload – i.e., assigning citations to reviewers. Because of this

abstrackr has been found useful as a stand-alone annotation tool, independent

of the machine learning components. We have thus had domain experts willing

to use our software. This has been helpful, because they have provided rapid

feedback regarding the software. More importantly, this has provided empirical

data (some of the datasets in Table 2.2) and a platform on which to distribute

the machine learning methods we develop.

A typical work-flow in abstrackr proceeds as follows. First, a literature search

is conducted in the usual way, e.g., via PubMed. Once the set of potentially

eligible citations is retrieved, it is imported into abstrackr. This starts a new

review/project. The user who creates a review is designated as its lead. During

the review creation process, project leads are asked a few questions about the

project. In particular, they are asked in which order citations are to be prioritized

for screening – here they are effectively specifying the active learning function to

be used. For example, they may elect to screen citations in order of the likelihood

that they are relevant, as predicted by the current model (we use the scoring

function Q discussed in Chapter 4). The former is the default, but project leads

may alternatively elect to simply screen the citations in a random order. Once

the review is created, the lead can invite other reviewers to join the project.

Reviewers will spend the majority of their time interacting with the interface

shown in Figure 6.2. In this interface, they are presented with a citation (title,

abstract and MeSH keywords) and can designate it as ‘relevant’, ‘borderline’ or

‘irrelevant’. Once one of these labels is assigned to the citation, the reviewer is

immediately presented with a new citation to screen. The next citation selected

by the system is a function of the active learning strategy Q that was selected

for the corresponding review.

Terms and n-grams that the user has labeled are highlighted in a color indi-

cating their polarity, i.e., whether (and to what degree) the highlighted term is

indicative of ‘relevance’ or ‘irrelevance’. Initial interactions with reviewers sug-

gested that it is natural for them to provide two levels of granularity in either

direction, i.e., a given term might be designated as ‘highly’ or ‘weakly’ indicative

of relevance (irrelevance). Users can add additional labeled terms at the bottom
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Figure 6.2: The main user interface of the abstrackr software. Terms that the ex-
pert has designated as indicative of relevance or irrelevance are highlighted (green
for positive/relevant, red for negative/irrelevant). Users may enter additional terms
into the text-box at the bottom of the screen, designating them as relevant (irrele-
vant) or strongly relevant (irrelevant) by clicking the single and double thumbs up
(down) buttons, respectively. This ‘thumb-level’ encodes the rankings exploited by
our CW-SVM (151); see Chapter 3. The labeled terms also inform the order in
which the remaining abstracts will be shown to the reviewer, as described in Chap-
ter 5. The reviewer can elect to accept (X), designate as borderline/ambiguous
(?), or reject (×) the current citation: these are the instance labels. Once they
do so, the next citation (as ordered by the active learning ordering function) will
immediately be retrieved and displayed to the user.

183



6. TOWARD MODERNIZING THE SYSTEMATIC REVIEW
PIPELINE

of the page; the thumb icons correspond to the aforementioned feature-labels.

This interface enables dual supervision, discussed at length in Chapters 3 and 5.

Experts can label both instances (citations) and features (words/n-grams). Both

will ultimately be exploited by the CW-SVM (151) we formulated in Chapter 3.

In addition to allowing users to impart labeled features, the abstrackr interface

allows them to make other annotations regarding particular citations, including

structured and general notes about studies and ‘tags’ that may be viewed as

secondary labels. For example, users may tag all randomized control trials.
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Figure 6.3 provides a schematic of the abstrackr system architecture. The

numbered arrows in the figure indicate interactions and the general ‘flow’ of the

system,
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Figure 6.3: The abstrackr system archi-
tecture.

which we now describe. (1) Re-

searchers undertaking the review in-

teract directly with the web ap-

plication via the interface depicted

in Figure 6.2. (2) The next ci-

tation to be screened is selected

based on a priority table stored in

the database. This table contains

ranked lists of citations for each re-

view in the system; these citations

are ranked according to the active

learning function (e.g., uncertainty

sampling) selected for the corresponding review. Re-training a model on all of

the labeled data for a given review in order to re-calculate the active learning

score for each instance in the unlabeled pool can incur a substantial computa-

tional cost; thus re-prioritizing the unlabeled citations each time a new citation

is labeled can be quite slow. Any deployed active learning system must address

this issue, or else it risks being unresponsive, thereby undercutting the aim of

making better use of expert time. Our strategy is to perform this re-ranking

asynchronously: (3) abstrackr periodically calls on the machine learning library

(also local to the server) to (4) re-sort the citations for the current review. This

asynchronous re-ranking means that the reviewer does not have to wait for the

computer to decide which citation should be screened next; this is decided be-

forehand and immediately displayed to them.

In Chapter 4, we discussed the need to allocate labeling tasks in a way

that makes the best possible use of the participating experts. The abstrackr

system roughly follows the Multiple Expert Active Learning (MEAL) algorithm

proposed in Section 4.3. This method requires a ranking of the participants

with respect to expertise. That is, we need to know which of the participating
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screeners are likely to provide high-quality labels and how pricey these labels

will be. We assume that expertise correlates with cost, i.e., that less experienced

(cheaper) reviewers will tend to provide lower-quality labels compared to more

experience (expensive) reviewers. As a proxy for this information, we ask users

how many systematic reviews they have previously participated in when they

register for an account on abstrackr. When an inexperienced reviewer labels a

citation with the ‘?’ button, indicating that he or she is insufficiently confident

as to whether it ought to be included or not, this citation is then re-assigned to

a more experienced reviewer. Citations labeled as ‘?’ are called ‘maybes’ within

the system and can be reviewed at any time by the project lead, who must

eventually make a screening decision. We have not yet integrated the predicted

annotation time model described in Section 4.4 during active learning, but plan

on doing so in the near future.

abstrackr has been used to facilitate screening in well over fifty systematic

reviews. Once we have performed a large-scale validation of our machine learn-

ing approach to semi-automating screening, this functionality will be integrated

into abstrackr. Specifically, the system will automatically screen out irrelevant

citations, thus reducing workload.

We have built abstrackr to accommodate the interactive machine learning

technologies introduced in this thesis. As already mentioned, abstrackr priori-

tizes the screening of citations with respect to the user-selected active learning

criteria. The tool also makes nightly predictions regarding the likelihood that

the remaining unscreened citations for a given review are relevant. These are

estimated using the methodology developed in 2.3. Figure 6.4 shows the his-

togram displayed by abstrackr to summarize these estimates. At present, this is

largely an exploratory tool that helps project leads estimate the expected work-

load remaining, based on how many citations are likely to be included in the

review. As the machine learning technologies are more widely accepted by the

systematic review community, we envision project leads using these probabilities

to decide when to allow the system to automatically complete the screening.

Indeed, abstrackr has been used in two prospective cases already. However,

because our large-scale validation remains to be performed, in these cases a
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Figure 6.4: The abstrackr software displays a histogram of the predicted proba-
bilities that remaining citations are relevant. These probabilities are estimated as
described in 2.3. Here probabilities are shown for the 9,079 studies that remain in
an ongoing systematic review regarding Clopidogrel being carried out by researchers
at the Tufts EPC within the abstrackr software. As expected (given that relevant
citations are rare) current probability estimates suggest that 1790 of the remaining
9079 citations are relevant (∼20%). This can be seen by eyeballing the mass to the
left of .5, which accounts for the majority of the remaining citations. Because we
are relying on the method we developed and verified specifically for the task of pre-
dicting good class probabilities in imbalanced scenarios, we can be confident that
those citations receiving low probability scores are indeed likely to be irrelevant.
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trained assistant (not a physician) screened all of the citations that the algo-

rithm excluded to double-check the classifier’s decisions. When uncertain about

a particular citation, the assistant deferred to the project lead (a physician; i.e.,

a more experienced reviewer). In both cases, abstrackr correctly included all

relevant citations, that is, it never designated a relevant citation as being irrel-

evant. More specifically, we performed prospective classification for two reviews

being conducted within abstrackr: one concerning treatments for sleep apnea, the

other investigating self-measured blood pressure. In the former, 14,368 citations

were retrieved via the initial query and had to be screened; in the latter 9,550

citations were retrieved. Using the abstrackr system, reviewers screened these

citations interactively, in decreasing order of their likelihood of being relevant,

as predicted by the machine learning model. We continued this process until the

model no longer classified any of the remaining unlabeled citations as relevant.

At this point, the remaining abstracts were screened by the assistant. To mit-

igate the possibility of false negatives on her part, the assistant was instructed

to err on the side of inclusion, i.e., to mark for review by a more experienced

expert any citations that were borderline or about which she was uncertain.

In the case of sleep apnea, 8,358 of the 14,368 (∼60%) of the citations were

screened before the model predicted that the remaining 6,010 were irrelevant.

The assistant marked for review 126 of these, all of which were subsequently

excluded. For self-measured blood pressure, the model predicted that the re-

maining citations were irrelevant once 5,632 (again about 60%) were screened.

At this point, the remaining 3,918 were screened by the assistant, who flagged

48 of these as being possibly relevant. Again, all 48 were subsequently rejected

by the project lead.

In summary: on both reviews for which the classification component of the

abstrackr system has been deployed prospectively, it reduced workload (the num-

ber of citations that needed to be manually screened) by about 40% without

wrongly excluding any relevant reviews, i.e., the sensitivity of the classifier was

100%. This was verified by an assistant double-checking (screening) the citations

that the system rejected. (Note that the assistant was explicitly instructed to

err on the side of sensitivity). Once we have conducted our large-scale validation
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on many real-world systematic review datasets, this latter step of manually ver-

ifying the classifier’s decisions will no longer be required, assuming our method

continues to replicate this caliber of performance. The results of this empirical

evaluation should generalize because we are curating a diverse set of more than

thirty systematic reviews.

6.3 Conclusions

In this chapter we have presented practical results regarding the application

of the machine learning methodologies developed in this thesis to the task of

citation screening for systematic reviews. In Section 6.1, we presented results

from a realistic prospective evaluation of applying the semi-automated approach

to update existing systematic reviews. We demonstrated that this can reduce

workload substantially – by up to 90%, in some cases – without missing relevant

articles. In Section 6.2 we described the abstrackr tool, which facilitates citation

screening and implements the machine learning technologies developed in this

thesis.

We are presently curating a large set of systematic review datasets in order

to perform a large-scale verification of the proposed technologies for new reviews,

in this future evaluation we will also exploit active learning and dual supervision

for reviews for which labeled terms are available. This large-scale evaluation

is critical because systematic reviewers need to trust that the system will not

wrongly exclude relevant literature. By curating a large (more than thirty)

set of diverse systematic reviews, and – hopefully – demonstrating that system

consistently reduces labor without missing eligible studies, we will demonstrate

this empirically.
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Conclusions and Future

Directions

There is a universe behind and before him. And the day is approach-

ing when closing the last book on the last shelf on the far left: he will

say to himself, “Now what?”

Jean-Paul Sartre, Nausea

Scientific disciplines are increasingly inundated with data. Domain experts in

these subjects are relatively few, and their time and expertise is thus a scarce and

valuable resource; making better use of domain expert time is crucial if we are to

gain from the torrential amount of available information. Machine learning is an

obvious candidate for reducing the labor required to squeeze useful knowledge

from data. ML techniques can mine valuable facts from unstructured data, help

experts find what they are looking for, and otherwise automatically or semi-

automatically process information.

But if machine learning and data mining techniques are to be useful in prac-

tice, new methods must be developed to address the problems inherent to data

mining in the real-world. This thesis has made several methodological contri-

butions that aim to bring machine learning out of the lab and into practice,

particularly in the context of domains that require substantial amounts of ex-

pensive human expertise. These methods have the over-arching aim of making

better use of domain expert time, either by inducing better models in general, or
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by exploiting novel interactive forms of supervision (i.e., via the active learning

and dual supervision paradigms).

As a motivating application throughout this work, we have used systematic

reviews. Systematic reviews look to rigorously identify and synthesize all of

the literature relevant to a precisely formulated clinical question. A tedious

step in the systematic review pipeline is retrieving from the body of biomedical

literature the articles pertinent to the clinical question at hand. The number of

published manuscripts that researchers must search through to find these articles

is already enormous, and it continues to grow exponentially (81). But making

sense of this data – that is, finding out what actually works in health-care – is

arguably more important than ever, especially in light of impending health-care

reform in the United States. Due in part to the growth of the literature and in

part to increasingly rigorous standards, the amount of work necessary to produce

and maintain these reviews is becoming unmanageable (18). Systematic reviews

are but a single illustrative example; experts everywhere in health sciences and

beyond are struggling with information overload.

Tasks in clinical informatics in particular pose challenges to existing machine

learning technologies. Specifically, class imbalance is inherent to such tasks, and

hinders the performance of ‘off-the-shelf’ learning algorithms, especially with

respect to the rare class. Moreover, probability estimates from existing models

are unreliable under imbalance. Another issue is that it is too costly, in terms of

expert time, to label the amount of training data necessary to induce sufficiently

good ML models. This problem may be mitigated by the emerging paradigms

of active learning and dual supervision. Work in the former direction, however,

has made several unrealistic assumptions that hinder its adoption in real-world

tasks. Methods that take the latter approach, meanwhile, are only recently being

proposed.

In this thesis we have developed novel machine learning and data mining

methods that address these issues. The immediate aim has been to reduce the

workload involved in conducting systematic reviews. But this is only an ex-

emplary task; the approaches we have presented here have wider application

to many real-world learning problems, i.e., those that require specialized ex-
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pertise, exhibit class imbalance (and asymmetric costs) and for which limited

human annotation resources are available. We have shown that the methods we

have developed bring substantial improvements over previously existing machine

learning approaches in terms of inducing better models with less human effort.

We next summarize our contributions and sketch future research directions.

7.1 Thesis Contributions

The main data mining and machine learning contributions we have made are

summarized as follows.

• A better understanding of class imbalance and how to mitigate

its effects on learning. Imbalance is a property inherent to many inter-

esting real-world learning tasks, including biomedical citation screening.

Yet despite a wealth of research investigating supervised learning in imbal-

anced scenarios (77), there has been little theoretical understanding of the

problem. Consequently, existing methods for handling imbalance are not

well-motivated, and thus unreliable. In Chapter 2, we developed a theo-

retical framework for probabilistically analyzing imbalanced scenarios. We

used this framework to motivate the strategy of bagging an ensemble of

classifiers induced over balanced bootstrap training datasets (166). We

demonstrated empirically when this strategy will work well, compared to

alternative methods for handling imbalance. Furthermore, we considered

the task of making class probability estimates in imbalanced scenarios, a

problem that has previously received little attention. We demonstrated

that in imbalanced scenarios, probability estimates are inherently biased,

i.e., they tend to underestimate the probability that rare instances indeed

belong to the minority class. We introduced the stratified Brier-score as

a metric to quantify the class conditional performance of probability esti-

mators, and we proposed undersampling and bagging as a means of mit-

igating this bias, thereby inducing better probability estimators. Finally,

in Chapter 4, we proposed a novel means of evaluating the performance of
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classification systems in imbalanced scenarios that elicits the relative costs

of false positives (negatives) from the domain experts themselves (165).

• New methods for learning under dual supervision. Traditional su-

pervised learning algorithms exploit only instance labels, i.e., each training

example is associated with a single class label. However, domain experts

may be able to provide more direct forms of supervision in the form of

labeled features. A labeled feature is an attribute whose presence is in-

dicative of class membership. For example, if one is inducing a model to

discriminate positive from negative movie reviews, the presence of the word

‘great’ is likely to indicate membership in the former class, while the word

‘terrible’ suggests the latter. In Chapter 3 we developed a new method that

extends the SVM model to exploit such information during classifier induc-

tion (151). Moreover, this model is flexible enough to facilitate learning

from ranked labeled features: e.g., experts may signal that certain features

are strongly indicative of one class, while others only weakly indicative.

• Novel methods for real-world active learning. In the canonical active

learning scenario, it is assumed that there is a single, infallible ‘oracle’ who

provides labels at a fixed cost. In reality, there are often multiple labelers

of varying skill and cost participating in a task. Indeed, this is the case

in biomedical citation screening; there are typically three to six reviewers

on a given project, some of whom are experienced (expensive) and others

who are relatively novice (cheap). This is a common scenario in specialized

tasks. In Chapter 4 we proposed a novel active learning method that makes

the best use of a given group of experts with varying cost and expertise, i.e.,

at each step in AL, we pick who is to do the labeling in addition to which

instance is to be labeled (167). Furthermore, we proposed a novel method

to predict the length of time – a proxy for cost – that it will take to label

a particular citation, and incorporated this prediction into the instance

selection process in AL (163). We demonstrated that this strategy makes

better use of experts, i.e., produces better models with less annotator effort.

Finally, in Chapter 5 we proposed a novel, co-testing based approach for
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dually supervised active learning (165), and showed that exploiting dual

supervision to guide the AL process can improve classifier performance,

particularly in imbalanced scenarios.

• Practical implications: reducing the workload in systematic re-

views via data mining. In Chapter 6 we discussed the practical impli-

cations of our work on the citation screening process. We demonstrated

via a realistic empirical evaluation that abstrackr can reduce the number

of citations that human experts must screen by eighty to ninety percent,

representing a substantial reduction in labor, without missing any rele-

vant citations. Furthermore, we have deployed the above technologies via

an open-source, web-based system to facilitate abstract screening that we

call abstrackr. The abstrackr tool, discussed at length in Section 6.2, imple-

ments multiple expert active learning and accommodates dual supervision.

Most importantly, it allows us to actually deploy the technologies we have

developed, thus turning theory into application.

7.2 Future Directions

We have made progress in developing machine learning methods that build better

models with less human effort, and that address properties inherent to many

real-world learning scenarios. We have shown that these methods are capable of

substantially reducing workload in the case of citation screening for systematic

reviews. Our contributions thus represent a promising step toward easing the

burden on experts imposed by data overload. But as always, questions remain.

An immediate problem we are working on pertains to our dually supervised

learning method, the CW-SVM (151). As mentioned, a drawback to this ap-

proach is the run-time necessary to solve the optimization problem as stated.

Moreover, three C parameters must be estimated, rather than the two usually

required for SVM. This increases the time required to perform grid search to

estimate these. To make this approach more computationally feasible, we are

therefore presently working on a Perceptron (136) formulation of the same intu-

itions that guide the CW-SVM. The aim is to achieve comparable performance
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with a linear-time learning algorithm, thus making the application of dual su-

pervision more practical.1

One avenue in the abstract screening problem that we did not explore in

this thesis is the potential exploitation of the citation structure during (active)

learning. We believe, for example, that it is likely that relevant studies tend

to cite similar articles. It thus seems natural to consider this structure during

model induction. This is referred to as collective classification (142). It would

be interesting to explore alternative forms of supervision in collective classifica-

tion. For example experts may communicate that they believe certain papers

are ‘hubs’. We are especially interested in the prospect of combining this with

active learning approaches for collective classification, e.g., as proposed by Bilgic

and Getoor (23).

An additional outstanding problem that we hope to soon address is the con-

cept drift that occurs while updating systematic reviews. Concept drift (173)

refers to scenarios in which the target concept changes over time. As an ex-

ample, consider the task of updating existing systematic reviews (discussed in

Section 6.1) in which we look to identify relevant articles published after the orig-

inal review was conducted. In the case of medical treatments, one can imagine

that the available treatments, technologies and other factors change over time.

Thus the vocabulary in articles deemed relevant during the original review may

not be the same as that found in newly published articles. This problem is closely

related to domain adaptation (24, 50), in which one looks to adapt a classifier

trained for one target concept to a related one. We have ignored this problem

thus far, but it is likely that we could achieve better performance by accounting

for this concept drift. We will first apply existing methods, and then potentially

extend these to exploit specific properties of medical language.

Another problem we plan on tackling is the step after citation screening in

the systematic review pipeline: data extraction. In this step, reviewers extract

from the identified (relevant) studies the pieces of information that they wish to

synthesize. This step is even more laborious than citation screening. We thus

1Note that this would still require selecting parameters via grid-search, but the induction
algorithm would be linear-time rather than quadratic, which would greatly decrease running
time.
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plan to explore methods for automatic or semi-automatic extraction of clinically

relevant information from free-text. Initial steps in this direction have already

been made (89), but it is an extremely difficult task and a long way from being

solved.

As previously mentioned, another immediate aim of ours is conducting a

large-scale evaluation of the semi-automated citation screening approach. We

are presently curating systematic review datasets, and aim to assemble at least

thirty for the evaluation. This validation will allow systematic reviewers to trust

the automated system’s classification decisions. Our hope is to encourage wide-

scale adoption of the tool, thereby saving large amounts of time and effort in

aggregate.

We also hope to apply the technologies we have developed for the task of

citation screening to other problems, but within health informatics and beyond.

Indeed, we believe these methods are applicable to a wide range of real-world

learning problems. Consider the task of legal document retrieval (117, 135), in

which lawyers and other highly paid individuals must identify specific relevant

information somewhere amidst torrents of documents. As in citation screening,

the class of interest would be rare, experts would likely be highly skilled and

possess domain knowledge, and active learning would like be a fruitful approach.

In the longer term, we hope to develop technologies to assist consumers of

health information find trust-worthy, up-to-date clinical evidence relevant to

their needs. Specifically, we hope to investigate machine learning technologies

to make it easier for patients to discover reliable clinical literature regarding

their condition(s). At present health information consumers are largely left to

navigate the overwhelming volume of published literature by themselves.

Finally, in a related research direction, we hope to explore methods for au-

tomatically monitoring the quality and veracity of published clinical literature,

as this task will increasingly become too onerous for humans. Operationally,

a first step will be locating adverse events (i.e., undesirable health outcomes

that occur during a clinical trial) in clinical texts. This would be immediately

useful to clinicians looking for such information on a given drug. More inter-

estingly, however, this extracted information could be cross-checked against the
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corresponding entry on ClinicalTrials.gov (183), which is a database into which

researchers are legally obliged to deposit details of clinical trials. Thus adverse

events can sometimes be found in the ClinicalTrials.gov record but not in the

published manuscript; there is more leeway in terms of what can be reported in

the latter, and researchers are not always keen to report adverse events. This sug-

gests the task of semi-automatically identifying underreporting of adverse events

in clinical articles, perhaps by flagging manuscripts the model deems ‘suspicious’

and having a human review them.
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