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ABSTRACT
In medicine, the publication of clinical trials now far out-
paces clinicians’ ability to read them. Systematic reviews,
which aim to summarize the entirety of the available evi-
dence on a specific clinical question, have therefore become
the linchpin of evidence-based decision making. A key task
in systematic reviews is determining whether the results of
included studies may be affected by biases, e.g., poor ran-
domization or blinding. This is called risk of bias assessment
and is now standard practice. Standardized tools are used
to perform these assessments; a notable example being the
Cochrane risk of bias tool, which covers seven different types
of potential biases and involves researchers extracting sen-
tences from articles to support their bias assessments. These
assessments are crucial in interpretating published evidence,
but due to the exponential growth of the biomedical liter-
ature base, manually assessing the risk of bias in clinical
trials has grown burdensome for clinical researchers. Aim-
ing to mitigate this workload, we explore automating risk
of bias assessment. We demonstrate that systematic re-
views may be used to distantly supervise text mining mod-
els, obviating the need for manually annotated clinical trial
reports. Specifically, we leverage data from the Cochrane
Database of Systematic Reviews (a large repository of sys-
tematic reviews), and link clinical trial reports to structured
data from the same studies found in CDSR to produce a
pseudo-annotated labeled corpus. We then develop a joint
model which, using (the PDF of) a clinical trial report as
input, predicts the risks of bias in each of the aforemen-
tioned seven areas while simultaneously extracting the text
fragments supporting these assessments.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining

1. INTRODUCTION AND MOTIVATION
Reports describing randomized clinical trials constitute the
primary literature for evidence-based medicine (EBM). When

Random sequence generation

Allocation concealment

Blinding of participants and personnel

  Blinding of outcome assessment 

Incomplete outcome data 

Selective reporting

Other sources of bias
Welschen 2012 + - - - + ? + + low risk of bias

Soureti 2011 + + - - + + + - high risk of bias
Powers 2011 ? ? - - + + + ? unclear risk of bias
Benner 2008 + - - + + + - Key
Grover 2007 ? + - + + ? +

Maasland 2007 + + - - ? ? +
Steenkiste 2007 + ? - - ? ? +

Sheridan 2006 + + + - + + +
McAlister 2006 + + - + + + +

Figure 1: Illustrative risk of bias output from the
Cochrane tool. Each row represents a single study.
In this work, we aim to automate the generation
of such tables (and to extract the sentences from
articles supporting these judgements).

correctly designed and executed, randomized control trials
provide reliable evidence regarding the effects of medical in-
terventions (e.g., drugs): proper randomization allows one
to assess the causal effect of treatments. But flaws in trial
design, conduct, analysis or reporting can result in over or
underestimating treatment effects [5]. Assessing the quality
of clinical trials (i.e., the risk of bias in the reported results)
is therefore a critical step for researchers weighing the evi-
dence.

Assessing the risk of bias is especially important for those
undertaking systematic reviews, which look to rigorously
summarize the entirety of the evidence pertaining to a spe-
cific clinical question. Systematic reviews of clinical trials
are the cornerstone of evidence-based medicine and are con-
sidered the strongest form of evidence, because they pro-
vide a summary effect estimate that incorporates all relevant
published evidence.

Researchers performing such reviews must be careful to take
into account potential biases in the literature. Failure to
do so may result in inaccurate estimates of true treatment
effects. In light of the role that systematic reviews play in
shaping health policy guidelines and informing patient care,



such inaccuracies may ultimately be quite harmful. It is
therefore imperative to carefully assess the risk of bias in
clinical trial reports.

As the number of articles describing clinical trials continues
to grow exponentially (in 2010, more than 75 clinical tri-
als were published daily, and this number is increasing), the
prospect of manually assessing risk of bias for every clini-
cal trial publication becomes increasingly daunting (if not
impossible). Already the generation of primary evidence is
outpacing our ability to synthesize it given pragmatic re-
source constraints [1, 15]. If we are to keep systematic re-
views and related evidence-based medicine products current,
we need to optimize the steps involved in conducting EBM
and evidence synthesis. Machine learning and data mining
will play an important role modernizing the practice of EBM
[12]. More generally, the overwhelming volume of published
clinical literature requires the development of new data min-
ing methods that can automatically process, analyze and
otherwise make sense of clinical trial reports.

In this vein, we present a novel data mining method that
automatically assesses the risk of bias across several qual-
ity domains using the full-text of published articles while si-
multeanously extracting sentences that support these judge-
ments. Our contributions in this work are summarized as
follows:

• So far as we are aware, this is the first attempt to au-
tomatically infer the risk of bias across clinically im-
portant dimensions (see Figure 1). Automating this
quality assessment with reasonable fidelity may help
with myriad evidence-based medicine applications.

• We demonstrate that systematic reviews may be used
to distantly supervise [7] the training of text mining
models, thus avoiding the need for expensive manually
annotated data.

• We present a novel method for jointly judging the risk
of bias associated with a given article and extracting
the sentence that supports this judgement. This is in
keeping with how humans perform risk of bias assess-
ment. We demonstrate that this approach improves
performance with respect to risk of bias predictions
from free-text.

We show that automated risk of bias assesment is both fea-
sible and we show (qualitatively) that it is potentially useful
for systematic reviewers. Indeed, such an approach could
have a major impact in the way reviews are conducted. More
generally, the proposed method has the potential to facili-
tate rapid discovery of high-quality biomedical literature.

The remainder of this paper is structured as follows. In the
next section we motivate this work by discussing the domain
of evidence-based medicine. In Section 2.3, we then intro-
duce a novel distantly supervised [7] method to construct a
large corpus of pseudo-annotated articles describing clinical
trials: for each article we find a corresponding risk-of-bias
assessment across several domains and the specific sentences
that support these assessments. It is this annotation – cur-
rently performed by clinical researchers at substantial cost

– that we look to automate (using only the free-text of ar-
ticles). In Section 3 we introduce our approach to doing so.
Our method takes into account both document and sentence
level information jointly. In Section 5, we evaluate this ap-
proach for both document and sentence level risk of bias
assesments. In Section 6 we discuss methods for optimizing
both the performance and usability of the proposed method,
and how tools such as the one we introduce here can influ-
ence the way in which systematic reviews are conducted.

2. BACKGROUND
2.1 Systematic reviews
Randomized controlled trials (RCTs) provide the most reli-
able assessments of the efficacy and safety of medical inter-
ventions. As such, they should inform treatment decisions
[3]: this is the idea behind evidence-based care. But achiev-
ing this aim is complicated by the massive numbers of trials
that are conducted: for example, the Cochrane Library [10]
alone indexes 286,418 trials as having been conducted in the
last decade [13]. To practice in this environment of infor-
mation overload, decision-makers often rely on systematic
reviews to summarize the clinical trials that address a spe-
cific intervention for a particular disease (and for a particular
population).

Systematic reviewing consists of specifying an inclusion cri-
teria (i.e., the criteria studies must satisfy to be included in
the review), searching the literature, screening the retrieved
(potentially eligible) citations to identify eligible studies, ex-
tracting data from these eligible studies and, finally, sum-
marizing the relevant evidence. The process of producing
systematic reviews is thus extremely laborious, but of the
utmost importance in terms of enabling informed clinical
decisions. In the final step of statistical evidence synthesis,
it is vital to take into account the perceived quality of the
identified studies to be summarized. One would not want,
for example, a poorly run study to greatly affect the sum-
mary results of a systematic review. Practically speaking,
this means that one needs to carefully assess the potential
risks of bias.

2.2 The Cochrane Database of Systematic Re-
views and Risk of Bias Tool

The Cochrane Collaboration is a global network of researchers
who work together to produce systematic reviews. At present,
the group comprises over 30,000 researchers (mostly physi-
cians and other health practitioners) who have produced up-
wards of 5,838 systematic reviews1, collectively published as
the Cochrane Database of Systematic Reviews (CDSR)[10].
This database contains structured data manually extracted
from the papers describing the included trials.

The Cochrane Collaboration recently developed a tool for as-
sesing bias in clinical trials, which has been adopted across
all Cochrane systematic reviews since 2008 [5]. This tool
aimed to unify and improve the myriad tools that were pre-
viously used. The new system comprises seven domains by
default (see Table 1), but domains may be added or removed
by authors based on the needs of their specific review.

1http://www.cochrane.org/cochrane-reviews/
cochrane-database-systematic-reviews-numbers



Allocation concealment
Low risk
Quote: "The Family Practice Research 
Coordinator at the University of British 
Columbia held this sequence independently 
and remotely"

Bias

Authors judgement

Support for judgement

Figure 2: Review authors’ justification for their
score of an example study in domain 2, Allocation
Concealment; we retrieved the highlighted part us-
ing a regular expression

Review authors judge the risk of bias in each domain as high,
low, or unknown (see Figure 1). Most domains are assessed
per study included in the review. However, some domains
are assessed more than one time per study, i.e., once per
per outcome. For example, it is regarded as good practice
for a clinical trial to be double-blinded – that is, neither the
participant nor the investigator should be aware of which of
the treatments are being given to whom. In this paper we
focus on the first six domains, which are used consistently
across reviews; the seventh domain covers “other” risks, and
therefore varies greatly according to the needs of individual
studies.

The Cochrane tool uniquely does not score all studies which
are not blinded as having a high risk of bias, but instead
considers whether blinding is likely to have had an effect on
the specific outcome being assessed. Measuring subjective
outcomes in unblinded studies, such as participant satisfac-
tion or pain, is more susceptible to bias than measuring more
objective outcomes such as prolongment of life. Three of the
seven domains are recommended to be scored per outcome
for this reason. However, in practice review authors often
give a single score for all outcomes, and this is the practice
used in the majority of currently published reviews.

For many assessments, Cochrane reviewers justify their risk
of bias assessments by quoting supporting text directly from
the original study (see Figure 2). This is desirable because
it increases the transparency of the judgements.

2.3 Data
Here we leverage descriptions of and data about clinical tri-
als manually extracted for existing Cochrane systematic re-
views. We use this structured data (which we glean from
the CDSR) as a substitute for manual annotations. In this
sense the strategy we take here is distantly supervised [7, 8].

2.3.1 Data structure of Cochrane reviews
The CDSR contains structured and semi-structured data for
the individual studies comprising each systematic review.
Internally, the Cochrane Collaboration stores working ver-
sions of their reviews as XML. Each review contains a wealth
of (structured) data about the included clinical trials (i.e.,
those that met review inclusion criteria). There are usually
multiple clinical trials described in a single review. Cochrane
reviews use basic clinical trial identifiers which are unique
per review (based on the first author surname and year of
publication) throughout these files. It is therefore possible
to extract structured data, and filtered snippets of full text

full text PDF

pdftotext

sentence and 
word 

tokenization

bias data from 
Cochrane

extraction of 
quotes and 
final scores

sentence and 
word 

tokenization

matching 
sentences 

tagged

Figure 3: Corpus construction processing

data which describe a single clinical trial. Using these iden-
tifiers, we were able to obtain full structured citation data
for the primary reference of all included studies across the
entire CDSR.

2.3.2 Linking to full text studies
To facilitate retrieving the original trial reports, we linked
the trials to PubMed, a popular portal to biomedical study
citations. To cope with transcription errors by the Cochrane
review authors, we used non-overlapping combinations of the
citation elements to form multiple search queries. Each of
the queries might be expected to uniquely retrieve the target
paper; we assumed an accurate match in cases where two or
more queries retrieved the same article. Using this strategy,
we linked the semi-structured descriptions of 52,454 clinical
trials from Cochrane reviews to their unique PubMed ID.

2.3.3 Justification for risk of bias decisions
The risk of bias classification (high, low, or unknown) is
structured and retrievable per clinical trial for individual
domains. The risk of bias tool allows much flexibility: re-
view authors may remove core domains or add new domains
depending on the needs of their review. For this reason, we
restricted our task to the core default domains which have
wide uptake.

The risk of bias tool requires review authors to record an
explanation for each risk of bias judgement. This explana-
tion is recorded as unstructured text, but is retrievable per
study. It is permissible to use a quote from the original trial
report to justify a decision, and many review authors have
informally adopted a standardized way of recording this (see
Figure 2). We exploited this convention by searching for the
pattern throughout the CDSR using a regular expression.
We identified quotes in one or more domains for a total of
3,529 clinical trials. For 2,200 of these trials, we were able to
obtain full text original reports in PDF format. These PDFs
linked with the structured and unstructured descriptions of
the same trials from the CDSR formed our corpus.



Domain title Explanation Level of score
Random sequence generation Was the method of randomisation scientifically valid per study
Allocation concealment Are researchers able to influence which groups partici-

pants are allocated to
per study

Blinding of participants and personnel Were participants treatment groups concealed from them
and study personnel

per outcome

Blinding of outcome assessment Was the person assessing outcomes blinded to the partic-
ipants’ treatment group

per outcome

Incomplete outcome data Might an imbalance in study withdrawals or dropouts
lead to a bias in results

per outcome

Selective reporting Have any outcomes studied not been published (usually
by comparison with a protocol)

per study

Other sources of bias per study

Table 1: Possible sources of bias assessed by the Risk of Bias tool

2.3.4 Aligning Cochrane data with original trial re-
ports

PDFs of clinical trial reports were converted to plain text
using the pdftotext utility from Xpdf.2 We retrieved in-
dividual quotes from the Cochrane database, and sought
the longest matching substring in the clinical trial report.
For the sentence identification task, the clinical trial reports
were word and sentence tokenized; sentences that overlapped
a quote were labelled positively; all others negatively (see
Figure 3). For the document classification task, we labelled
each full text trial report as being at high, low, or unknown
risk of bias using the classification from the linked review
(i.e., these labels are explicitly available in the CDSR).

3. METHODS
In this section we first introduce the preliminary machin-
ery that constitutes the baseline approaches we consider for
the tasks of risk of bias assessment and supporting sentence
extraction. We then introduce a model that jointly lever-
ages both document level risk of bias assessments and the
associated supporting quotes. The intuition here is that the
identified sentences will inform the document level preduc-
tions and thus result in improved predictive performance.

3.1 Overall Risk of Bias Prediction
We first consider the task of predicting the overall (study-
level) risk of bias from the full-text of articles. As an initial
approach, we treat this as a standard binary classification
task, where the output space Y comprises low risk and un-
known/high risk. This dichotomization of the task is prac-
tical in that one typically wants to know whether or not
an article exhibits some sort of bias. From this vantage,
the distinction between unknown and high risk is unimpor-
tant; both would require further assessment by the domain
expert. We note that a model that could reliably identify
studies with low risk of bias across domains would be use-
ful, e.g., in helping researchers rapidly discover high quality
literature.

We leverage the soft-margin Support Vector Machine (SVM)
[14] as our classification model. We will denote each instance
(article) by xi, its label for quality domain q ∈ Q (where Q
is the set of quality domains enumerated in Table 1) by yqi
and a feature extracting function by φ. For the latter we

2http://www.foolabs.com/xpdf/

use standard bag-of-words (BoW) text encoding. To map
the problem into a binary task, we define a function F as
follows:

F(yqi ) =

{
1 if yqi = low risk of bias

−1 otherwise
(1)

Then, for each quality domain q we find a minimizing weight
vector wq

d (the d here is to distinguish this vector from those
introduced for the sentence extraction task, below). We as-
sume risk of bias labels assume the form:

yqi = sign{wq
dφ(xi)} (2)

And we find each wq
d by solving the following objective:

argmin
w

q
d

α‖wq
d‖

2 +

nq∑
i=1

L(sign{wq
dφ(xi)},F(yqi )) (3)

Where nq denotes the number of labeled instances for the
domain q and L is the usual hinge-loss function. The α
parameter controls the degree of regularization: we tune
this via grid-search over training data, maximizing for F1
score.

3.2 Sentence Prediction
We have just described an initial approach to overall (docu-
ment level) risk of bias prediction. We now review our base-
line approach to automatically extracting sentences sup-
porting these quality judgements. A similar approach as
for the overlall risk of bias prediction is taken, though here
labels indicate whether or not a given sentence was selected
by a domain expert as supporting her judgement regarding
risk of bias for a specific quality domain. Denoting sentence
j in document i by sij and its associated label (for target
domain q) by lqij , we posit the classification model:

lqij = sign{wq
sφ(sij)} (4)



And we estimate the associated sentence extraction param-
eters wq

s by optimizing the following (again for each domain
q):

argmin
w

q
s

α‖wq
s‖2 +

nq∑
i=1

mi∑
j=1

L(sign{wq
sφ(sij)}, lqij)) (5)

where the notation is similar to above (Equation 3) with
the addition of mi, which we use to denote the number of
sentences in document i. Note that we use the same feature
extraction function φ as we did for the full-text predictions
(here this extracts binary bag of words features).

4. A JOINT RISK OF BIAS AND SUPPORT-
ING SENTENCE EXTRACTION MODEL

We now introduce a novel model that integrates the sentence
extraction task with document level risk of bias prediction.
A joint model is preferable to completely independent mod-
els for classification and extraction because the overall risk
of bias assessment ought to inform the supporting sentence
extraction. Intuitively, for example, if the (study-level) risk
of bias due to poor random sequence generation is deemed
to be low, then we would expect the supporting sentence to
contain words such as computer and generated (Table 2).

4.1 Informing Overall Risk of Bias Prediction
with Supporting Sentences

To realize a joint model, we introduce terms into the doc-
ument level risk of bias prediction that interact n-gram in-
dicator features with supporting sentence predictions. We
will again denote the binary prediction regarding whether
or not sentence j in article i (sentence sij) supports the risk
of bias judgement for domain q by lqij (we assume this is 0
or 1) and we will denote the corresponding predictions by

l̂qij . Further, we denote the supporting sentence for domain
q in document i by sqi∗.

We then augment the baseline risk of bias model (Equation
3) as follows:

yqi = sign{wq
dφ(xi) + wq

dsλd(sqi∗)} (6)

Here λd is a feature extraction function for supporting sen-
tences: this can be viewed as adding terms that indicate
tokens (unigrams) being present in a supporting sentence
within a document. Put another way, these are interaction
terms that cross bag-of-words features with their prescence
in judgement-supporting sentences. We use wq

ds to denote
the (document-level) weight vector associated with the sen-
tence interaction features for domain q. During training we
minimize over w′d = wq

d + wq
ds (here + denotes vector con-

catenation).

For unlabeled documents (i.e., at test time), we will of course
not know which sentence supports quality assessment (i.e.,
which is sqi∗). Instead, we rely on predicted sentence labels,

l̂qij . In particular, for each quality domain q we predict for

each sentence j in article i whether or not it supports the
judgement for said domain. If the prediction is that it does,
we add interaction terms accordingly. Note that at test time,
we may therefore add interaction features from multiple sen-
tences that are predicted as supporting quality assessment
in a given article (because these predictions are made inde-
pendently). We can write the whole predictive model out as
follows:

yqi = sign{wq
dφ(xi) + l̂qi0w

q
dsλd(sqi0)+

...+ l̂qimi
wq

dsλd(sqimi
)}

(7)

Where the l̂qij are predictions made via Equation 4.

4.2 Sentence Extraction
We also consider a model that informs supporting sentence
extraction with document level risk of bias information. In
particular, we add terms to Equation 4 that interact sen-
tence level features with the predicted article-level risk of
bias assessments for the corresponding document. More
specificially, we augment the representation of each sen-
tence j comprising document i with terms that interact the
document-level risk of bias assessment with sentence-level
features. Formally, abbreviating low risk and high risk by lr
and hr, respectively, we assume the following model:

lij = sign{wq
sφ(sij) + Ilr (yqi )wq

s;lrλs;lr (sij)

+Ihr (yqi )wq
s;hrλs;hr (sij)}

(8)

Where Ilr (Ihr ) is an indicator function that is 1 when the
argument is low risk (high risk) of bias and 0 otherwise. Fur-
thermore, we have introduced the sentence-level interaction
feature extraction function λs, analogous to λy above, ex-
cept that here we interact sentence feature indicators with
the binary low risk (lr) and high risk (hr) document labels.
We denote the weights associated with these features by
wq

s;lr wq
s;hr , respectively. We also introduce feature extrac-

tion functions that are parameterized by the document level
labels (λs;lr and λs;hr ). These are convienence functions that
generate unique ‘interaction copies’ of bag-of-words features
for tokens in low and high risk sentences.

5. EMPIRICAL RESULTS
We matched the full-texts of 2,200 clinical trial reports to
semi-structured descriptions of the same trials in the CDSR.
We first consider the task of identifying studies with low risk
of bias (or other). We show five-fold cross-validation results
for this task in Tables 2 and 3, and Figure 5. We report pre-
cision, recall and F1 with respect to low risk of bias (or not).
Precision is the fraction of studies classified as low risk that
indeed were (as per the Cochrane reviewer’s decision); recall
is the total fraction of low risk studies correctly identified
as such and F1 is the harmonic mean of these metrics.

As can be seen in Figure 5, the proposed joint model im-
proved the predictions across all domains. And as can be
seen in Table 3, interaction features comprised the majority



Domain F1 precision recall most informative features
Random sequence genera-
tion

0.70 (0.64, 0.79) 0.67 (0.51, 0.82) 0.79 (0.52, 0.93) computer, generated, random, ran-
domization

Allocation concealment 0.68 (0.65, 0.72) 0.66 (0.60, 0.71) 0.72 (0.57, 0.82) sealed, generated, envelopes, ran-
domization

Blinding of participants and
personnel

0.57 (0.38, 0.69) 0.66 (0.62, 0.69) 0.53 (0.26, 0.78) blind, placebo, double, influence,
summary

Blinding of outcome assess-
ment

0.62 (0.54, 0.67) 0.52 (0.46, 0.56) 0.81 (0.69, 1.00) blinded, secondary, nd, session, re-
sponsible

Incomplete outcome data 0.75 (0.73, 0.77) 0.63 (0.61, 0.70) 0.93 (0.82, 0.99) immediately, aimed, id, compare,
intravenous

Selective reporting 0.69 (0.57, 0.78) 0.62 (0.59, 0.71) 0.82 (0.48, 0.98) march, finding, maintenance, insti-
tute, july

Table 2: Document classification results: baseline model (Section 3.1) performance. Shown are averages
over five-fold cross-validation (and ranges). We also include the four most informative features according the
model for illustrative purposes.

of the top-ranking (most informative) features. Thus the
proposed strategy of incorporating features extracted from
sentences deemed likely to support risk of bias assessments
improves classification performance.

We define task 2 as identifying sentences reporting informa-
tion about bias. We present results for this problem in Table
4. Unfortunately the proposed joint models (which included
actual or predicted information from the document level) did
not improve performance for this task. We note, however,
that when the true (rather than predicted) document-level
labels are used, we do see a consistent improvement in pre-
cision (though at a modest expense in recall). Furthermore,
a caveat to these results is that the sentence labels we are
using for evaluation are noisy (in contrast to the document
level risk of bias labels); we discuss this point further below.

6. DISCUSSION
In this paper we have demonstrated that systematic reviews
may be used to distantly supervise the training of biomedical
text extraction systems, thus obviating the need for expen-
sive manual annotation. In particular we have demonstrated
the feasibility of this approach for training models to per-
form risk of bias assessment for articles describing clinical
trials. We have also described a joint model for this task that
simultaneously identifies the text fragments justifying the
assessment. We demonstrated that this novel approach im-
proves document-level risk of bias assessment performance.
We note that the Cochrane risk of bias tool requires authors
to transparently describe the reasons for their decisions. An
automated tool would therefore have to justify its decisions.
The method presented here has the advantage of being able
to provide the sentence from the trial report which led to
the classification.

Assessing the risk of bias in a study is inherently subjective.
Indeed, a validation study of the Cochrane risk of bias tool
found wide variations in judgements by different researchers
in all domains, with the selective reporting domain showing
the least agreement (κ=0.13, 95% CI -0.05 to 0.31) [4]. The
instructions for the risk of bias tool indicate that ‘convinc-
ing text’ from the original clinical trial reports is uncom-
mon, and recommends consulting the trial protocol where
possible. Our model was not able to predict sentences with
any useful accuracy in this domain, though we do not think
is surprising given the difficulty (as evidenced by the poor

…women with early breast cancer (pT1-3a pN0-1 
M0) at 17 centres in the UK were randomly assigned 
after primary surgery to receive… 

Randomisation method was computer generated and 
was not blinded.
(algorithm predicted sentence)

(quote from the Cochrane review)

Figure 5: Example of where the algorithm (the hy-
brid model using the predicted document level la-
bel) has picked a better sentence justifying a risk of
bias decision for random sequence generation than
the quote in the training data.

agreement between domain experts).

Concerning the sentence identification task, we used quota-
tions from Cochrane as (distantly supervised) training and
test data. But we note that when assessing the risk of bias,
authors select what they deem to be the single best sentence
as evidence. This means other, equally relevant supporting
sentences, may not be marked by experts as such, thus re-
sulting in false negatives. Ideally the test data would identify
all relevant sentences as evidence. Indeed, Figure 5 shows
that the proposed model sometimes produces arguably better
(more pertinent) quotes than the ones actually reported in
Cochrane, but here such quotes (sentence predictions) would
still be counted as false positives, because of the limitations
due to our distantly supervised approach. This implies that
the results reported here are pessimistic for this task; it may
also account for why the proposed joint model fails to im-
prove performance for this task versus the baseline model.
We plan to assemble a gold standard test corpus comprising
a modest number of studies for which all acceptable support-
ing sentences for each quality domain have been recorded;
this would provide a more accurate evaluation.

Similarly, implementing the system within an integrated screen-
ing pipeline would reduce the importance of low precision,
as the predictions would serve as a reading guide to assist
domain experts (reviewers), rather than as a replacement
for their judgements altogether. We are currently working



Domain F1 precision recall most informative features
Random sequence genera-
tion

0.72 (0.67, 0.80) 0.69 (0.52, 0.83) 0.78 (0.63, 0.94) computer-i, computer,
generated-i, random-i

Allocation concealment 0.70 (0.68, 0.75) 0.67 (0.55, 0.79) 0.77 (0.59, 0.88) by-i, the-i, was-i, and-i, sealed,
calculated

Blinding of participants and
personnel

0.66 (0.59, 0.71) 0.65 (0.60, 0.73) 0.70 (0.50, 0.84) blind, double, placebo, placebo-
i, double-i, blind-i

Blinding of outcome assess-
ment

0.67 (0.63, 0.69) 0.53 (0.46, 0.57) 0.92 (0.85, 1.00) established, were-i, single, gen-
erated, blinded

Incomplete outcome data 0.76 (0.74, 0.79) 0.64 (0.61, 0.71) 0.94 (0.89, 1.00) aimed, described, needed, wong,
model, second

Selective reporting 0.72 (0.70, 0.78) 0.63 (0.59, 0.71) 0.87 (0.71, 0.98) oral, issue, unrelated, march,
maintenance

Table 3: Document classification results: joint model (Section 4.1) performance. -i represents ‘interaction’
features (where the word occured in a sentence predicted as supporting a quality assessment). Note the
frequency of the interaction features amongst the more informative tokens (suggesting that these are indeed
useful features).

0.65

0.70

0.75

0.80
random sequence generation

0.66

0.68

0.70

0.72

0.74

allocation concealment

0.40

0.45

0.50

0.55

0.60

0.65

0.70
participant/personnel blinding

baseline joint model

0.40

0.45

0.50

0.55

0.60

0.65

0.70

F1

blinding to outcomes

0.73

0.74

0.75

0.76

0.77

0.78

0.79

incomplete outcome reporting

0.60

0.65

0.70

0.75

selective outcome reporting

Figure 4: Results from five-fold cross-validation across the 6 domains. The y-axis is F1 score. Lines connect
results achieved on the same folds; the thick black lines are means (the grey lines correspond to individual
fold results). The proposed joint model consistently outperforms the baseline approach.

Domain Baseline Joint (true labels) Joint (predicted labels)
F1 precision recall F1 precision recall F1 precision recall

Random sequence generation 0.53 0.43 0.68 0.56 0.49 0.67 0.48 0.37 0.66
Allocation concealment 0.48 0.42 0.58 0.48 0.43 0.56 0.44 0.37 0.57
Blinding of participants and personnel 0.37 0.30 0.50 0.35 0.49 0.35 0.32 0.25 0.44
Blinding of outcome assessment 0.38 0.34 0.42 0.38 0.37 0.41 0.38 0.37 0.40
Incomplete outcome data 0.23 0.16 0.44 0.23 0.17 0.38 0.24 0.17 0.39
Selective reporting 0.06 0.11 0.04 0.06 0.05 0.07 0.03 0.02 0.06

Table 4: Results for the sentence identification task. The joint model does boost precision (at some cost in
recall) when the true document-level labels are used, but the model does not seem to improve performance
when the predicted labels are used in place.



on such a tool that leverages the model presented here.

To improve the performance of our system we plan to explore
related methods developed for sentiment analysis [6, 9], as
the task is conceptually similar. We are particularly inter-
ested in exploring probabalistic models that aim to jointly
model sentiment and text fragments [11, 2], although these
would need to be adapted to the supervised case. It might
also be possible to leverage more of the existing background
knowledge present in Cochrane.

Finally, we note that in future work we aim to extend these
strategies to extract other variables of interest from clinical
trial reports. Specifically, the CDSR contains structured and
semi-structured information on trial populations, interven-
tions, outcomes, and results data. Tools to automate these
tasks could lead to a large reduction in the time required to
produce systematic reivews.

Going forward, it will be crucial to assess the practical utility
of automated extraction systems. In particular, we envision
a hybrid computer-human system in which machine learn-
ing models guide the extraction process (thereby reducing
manual labor). Another potential use of automated meth-
ods would be to use the computer generated extractions for
redundancy to improve data quality; i.e., rather than hav-
ing two experts independently perform ‘double-extraction’,
we might substitute the computer for one of them. With
these concrete applications of automated methods in mind,
we then need to assess the level of predictive accuracy that
models need to achieve in order to be useful in practice.

Clinicians and health sciences researchers are overwhelmed
with data. If we are to maintain the rigor and compre-
hensiveness of evidence-based medicine products, new data
mining methods are sorely needed to mitigate problems of
information overload. This work is a step toward such larger
aims.
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