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Abstract—Healthcare practitioners are increasingly using
search functionality embedded in Electronic Medical Record
(EMR) software to search for relevant evidence summaries at
point of care. We introduce a learning to rank approach that
exploits information carried in EMR data and UpToDate user
accounts to (significantly) improve ranking results, compared
to a comparable model that does not exploit such features.

1. Introduction

Healthcare practitioners must be able to rapidly find
reliable evidence relevant to their clinical questions if they
are to make informed, evidence-based medical decisions.
Typically this means consulting online resources via key-
word search. We aim to improve this information retrieval
process by augmenting free-text queries with contextual
information gleaned from Electronic Medical Record (EMR)
and UpToDate account data.

UpToDate1 is an evidence-based clinical decision sup-
port resource widely used by healthcare practitioners. Up-
ToDate provides concise reviews of over 15,000 topics that
summarize published relevant evidence written and reviewed
by over 5,700 clinicians. These are accessible via a web in-
terface: users issue keyword searches to find topics relevant
to their information needs. Topics contain multiple sections
(see Figure 1), and the sought after information will likely
be found in only a few of these. We aim to build a model
that re-ranks sections to facilitate rapid information retrieval.

We exploit the intuition that different types of users will
likely be interested in different sorts of information (which
will be found in different sections): doctors with different
specialities will likely be interested in different facets of
topics. Thus users may be looking for different information
within the same topic, even if they issued identical queries.
Retrieval strategies that rely exclusively on term frequency
matching will fail to appropriately tailor results to meet
individual healthcare needs.

To address this shortcoming, we present a learning to
rank approach that capitalizes on attributes in EMR data
and UpToDate user accounts to personalize section ranking
results. Using a large corpus of recorded UpToDate searches

1. http://www.uptodate.com/home

Figure 1: The UpToDate search interface. We aim to re-rank the topic
sections (right) to meet individual needs.

conducted from EMR software, we demonstrate that this
approach significantly improves ranking performance over
a baseline learning to rank model that does not exploit EMR
features.

2. Corpus

UpToDate has collaborated with several large EMR
vendors to integrate search directly into EMR platforms.
This allows healthcare providers to directly perform searches
through their EMR software during clinical visits (i.e., at
point of care), as is increasingly common [1], [2]. Searches
conducted in this way by users registered with UpToDate
carry contextual information, including patient and health-
care provider data. Available EMR variables include: patient
age and gender, encounter type (e.g., emergency or inpa-
tient), subtopic (diagnosis, dosing, etc.), search performer
(provider or patient) and task context (this captures the
task being undertaken by the physician at the point of
the query, e.g., ‘medication list review’). This information
follows the Health Level Seven International (HL7) standard
for EMR data: hence we refer to it as “HL7 data”. We also
have access to data stored in provider UpToDate accounts,
including professional role (nurse practitioner, physician,
etc.), specialty, and institution type and name. To simplify



presentation, we group these account attributes with the HL7
data.

UpToDate’s search engine is built on top of the open
source software framework Apache Lucene.2 The current
system works well for rapid topic identification: in historical
search data (90,611 searches in all), users clicked through to
only a single topic from the ranked list in 85% of searches
conducted through EMR systems. Our focus is therefore
meeting more individualized and specific information needs
by ranking sections within topics for users by exploiting
HL7 data.

2.1. Deriving section relevance labels

Our dataset comprises 11 months (July 2013 to May
2014) of browsing logs from UpToDate, which we describe
further below. For learning and evaluation we require rele-
vance labels for sections, but we do not have explicit rele-
vance assessments. Instead we use the implicit information
recorded in the search logs: the ‘dwell time’ data. We also
capitalize on other types of user browsing behavior, such as
scrolling and text highlighting events.

We aim to use patient and provider attributes to improve
search results. Thus we will be concerned with triplets
of person-query-documents (PQDs) in the UpToDate logs.
We transform continuous dwell times logged within PQDs
into ordinal relevance labels. Specifically, we introduce the
ordered relation 5 � 4 � 3 � 2 � 1 (where 5 implies
highest relevance). We then derive labels for the sections
in the ith PQD, yi = {yi,1, . . . , yi,ni

}, where ni is the
number of sections in the document. We mapped dwell times
onto these labels in accordance with the empirical quintiles
into which they fell, e.g., sections with dwell times in the
top quintile were designated as 5 (highest relevance). We
assigned the lowest relevance label (1) to sections with dwell
times of 0.

We allowed more explicit forms of feedback (user copy-
ing and highlighting actions) to override relevance labels
assigned based on dwell time alone. In particular, we labeled
all sections from which users copied text as highly relevant
(5). And we incremented by one the dwell time-based
relevance scores calculated for sections in which the user
highlighted text (unless said sections had already received
the highest relevance level).

To summarize: we derived section relevance scores for
documents in the context of a participant/query (PQ) pair as
a function of (1) time spent on the section (i.e., the dwell
time) and, when available, (2) user actions (highlighting and
copying of text) recorded for sections.

3. Methods

We aim to personalize section rankings for queries based
on patient and provider attributes contained in the HL7 data.
We treat this as a learning to rank task and we base our
approach on SVM-rank [3], [4], which we next describe.

2. http://lucene.apache.org/

We then provide a detailed account of the novel features we
introduce that capitalize on contextualizing information to
improve section ranking.

3.1. Learning to rank using Rank-SVM

Rank-SVM is a learning to rank algorithm in
which a ranking task is transformed into an equiva-
lent binary classification problem [3], [4]. Consider a
set of sections ranked for a specific PQD triple i:
{(xi,1, yi,1), (xi,2, yi,2), . . . , (xi,ni

, yi,ni
)}, where we are

denoting feature vectors of sections by x’s and relevance
labels by y’s. For rank-SVM, we transform this data into
training instances (xi,(a,b), yi,(a,b)) for each pair of examples
{(xi,a, yi,a), (xi,b, yi,b)}, where xi,(a,b) = xi,a − xi,b, and
yi,(a,b) = +1 if yi,a � yi,b, yi,(a,b) = −1 if yi,a ≺ yi,b.
Rank-SVM minimizes the following hinge loss L for a
weight vector w [5]:

m∑
i=1

ni−1∑
a=1

ni∑
b=a+1

max{0, 1− yi,(a,b)w · xi,(a,b)}

where m is the number of PQDs. To select w, this loss
is traded off against model simplicitly via a squared `2
regularizer scaled by a parameter C.

3.2. HL7 features

A key task in learning to rank is designing a suitable
representation for items to be ranked. Here we introduce
features that encode EMR and UpToDate account informa-
tion.

All HL7 fields are categorical. We introduce features that
express conditional probability estimates to capture section
viewing preferences of users with shared attributes. For
example, such features might capture that a given section
is specifically relevant to dermatologists (but perhaps not
to physicians of other specialties). Intuitively, these carry
signal if individuals with shared attributes express similar
section preferences for topics. More specifically, denoting
by di,j a section in topic Di, where j ∈ {1, . . . , ni}, and
HL7 attribute X by HL7 X, we calculate conditional feature
values as follows:

count(dwell(di,j) ≥ τ,HL7 X = x)

count(dwell(di,j) ≥ τ) + 1
(1)

where τ is a dwell time threshold (in this work we set this to
3 seconds). This feature expresses an estimated probability
that a user will have HL7 attribute X = x given that
their dwell time for section j was at least τ seconds.3 For
example, X may be ‘specialty’ and x may be ‘dermatol-
ogist’: here the feature would capture the frequency with
which the section is relevant at some level to dermatologists
(normalized by the total section popularity across all users).
We refer to these as HL7P features.

3. We have added 1 to the denominator to avoid division by 0.



Content features
Level1SecLuceneScore Lucene score for the query.
QueryLevel1SecTitle5Gram Average 1-5 gram overlap between the query and the section title.
TopicTitleLev1SecTitle5Gram Average 1-5 gram overlap between the topic title and the section title.
section position Section position in the topic.
hierSecRefProb count(links to section)

count(all links) where links are observed hyperlinks among sections.

hierSecClickProb count(sub-section∈section)+1
count(section’∈topic) where sub-sections are nested within sections, and all sections have at least 1 sub-section

by construction (hence the.
sec prob estimate of overall section relevance, i.e., the number of PQDs in which this section was dwelled on for at least τ

seconds divided by the total count of PQDs in which the parent topic was opened.
HL7P features probability estimate of section relevance conditioned on ...
Gender x ... patient gender.
AgeGroup x ... (discrete) patient age group.
EncounterType x ... patient encounter type (e.g., emergency or inpatient).
Performer x ... the party performing the search.
Subtopic x ... the specified subtopic of the search (e.g., diagnosis).
TaskContext x ... the task context type (current healthcare process step).
InformationRecipient x ... conditioned on recipient role (patient or provider).
ProfRole x ... the professional role of the provider (e.g., nurse).
Specialty x ... the specialty of the provider (e.g., cardiology).
InstitutionType x ... the institution type from which the search was issued (e.g., teaching hospital).

TABLE 1: Details on the feature sets we use. Content features exploit only data from the query and section and do not capitalize on the information
carried in the EMR or UpToDate account data.

We also experimented with language-based “HL7L” fea-
tures that capture textual similarities between EMR at-
tributes and section texts. Specifically we used Lucene
scores, shared n-gram counts and cosine similarities. Due
to space constraints we do not explain them in further detail
here (these only marginally improved performance).

Table 1 summarizes the Content and HL7P features that
we introduced.

4. Experimental Setup and Results

Our aim is to determine whether augmenting instances
with contextualizing features derived from EMRs and Up-
ToDate user accounts improves ranking performance. We
thus consider two baseline strategies: baseline I uses only
the section Lucene score (w.r.t. the query) and baseline II
is a learning to rank approach (SVM-rank) that does not
exploit the HL7 features we have proposed. Our primary
experimental question is whether we are able to outperform
baseline II by exploiting HL7 features.

We used the subset of 6,192 Patient-Query-Document
pairs (PQDs) in the UpToDate logs that contained topics
viewed at least 20 times. We used 75% of these (4,643
PQDs) for training and held the other 25% (1,549 PQDs) out
for testing. We can view each PQD as a separate ranking task
(over document sections) for which performance statistics
may be calculated. We evaluated our approach using two
standard metrics for ranking: Kendall’s τ [6] and normalized
discounted cumulative gain (NDCG) [7]. We tuned the C
parameter via cross-fold validation on the training dataset
to maximize Kendall’s τ .4

4.1. Results

Results are shown in Table 2. HL7 features improve
performance w.r.t. both metrics. To assess statistical signif-
icance, we performed a one-sided Wilcoxon Signed-Rank

4. We searched over C ∈ {2−6, . . . , 212}.

Model Avg. Kendall’s τ Avg. NDCG
Baseline I (Lucene) 0.2013 0.6707
Baseline II (SVM-Rank; no HL7) 0.6345 0.8407
Content+HL7P 0.6698 0.8604
Content+HL7L 0.6352 0.8419
Content+HL7L+HL7P 0.6729 0.8647
HL7L+HL7P 0.4906 0.7796
HL7L 0.0283 0.5793
HL7P 0.4813 0.7758

TABLE 2: Results (averages over the 1,549 heldout PQDs).

test for both the Kendalls τ and NDCG metrics. For our
paired data, we use the ranking metrics calculated for each
test PQD using methods both with and without the HL7
features. We found a statistically significant difference in
ranking performances between models that used and did not
use HL7 features. That is, the median difference between the
Content+HL7P+HL7L model and model that used Content
alone was significantly greater than zero (p << 0.0001 for
Kendalls τ and p << 0.0001 for NDCG).

Figure 2 describes the relative weights of the ten most
predictive features in the best performing model.5 Fea-
tures derived from EMRs and UpToDate accounts dominate
this plot. An example observation here is that emergency
room physicians (2nd most predictive feature) seem to have
unique information needs, which squares with intuition.

5. Related Work

Existing personalized ranking strategies focus on ex-
ploiting users’ search and browsing histories to personal-
ize search result rankings [8], [9], [10]. Relatively little
work has been done using personalized health information
for ranking. Yadav and Poellabauer [11] did recently pro-
pose a ranking model that attempts to take both a user’s
search query and the user’s health profile into account.
Their method simply concatenates parameters from Personal

5. We calculated relative weights by normalizing the raw w terms by
max(w).
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Figure 2: The most predictive features and their relative weights in the best
performing model (content+HL7P+HL7L).

Health Records (e.g., previous medications) to the original
query and uses this expanded string as input to the Lucene
scoring function. In contrast, our approach that does not
require building profiles for each user, but instead exploits
general contextual parameters.

6. Conclusions
We have introduced a novel learning to rank approach

that uses EMR and provider data to significantly improve
section rankings within topics for point of care information
retrieval, as compared to an equivalent learning to rank
model that does not exploit this information. In future work,
we hope to refine our feature sets and the way that these
are treated within the learning to rank model.
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