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ABSTRACT
In the realm of data driven clinical research, medical con-
cepts, or phenotypes, are used to serve as indicators for pa-
tient clusters of interest. Often, studies will use groups of al-
gorithmically generated phenotypes (feature groups) to pre-
dict the occurrence of heart disease, diabetes, and other con-
ditions. When these groups are algorithmically generated,
the most common method of verification is manual human
annotation, which can be time consuming and sometimes
inconsistent. In this paper, we propose a supervision-free
method of verification that uses co-occurrence in PubMed
articles to determine clinical significance. We demonstrate
the efficacy of the method by 1) applying it to phenotypes
generated through automatic machine learning methods and
2) showing it separates randomly generated groups of phe-
notypes from curated groups of known, clinical phenotypes.

1. INTRODUCTION
Computational phenotyping is the practice of mapping

the raw information contained in Electronic Health Records
(EHRs) into sets of clinically relevant features, or pheno-
types. Clinicians can use the EHR-based phenotypes to
identify patients with specific characteristics or conditions
of interest. Phenotypes also enable cohort identification to
target patients for screening tests and interventions, support
surveillance of infectious diseases, and aid in the conduct of
pragmatic clinical trials and comparative effectiveness re-
search [14]. An example is the type 2 diabetes mellitus
phenotype (shown in Figure 1) [6]. The flowchart depicts
a series of characteristics that must be present in a patient’s
EHR for that patient to be identified as a type 2 diabetes
case patient.

Constructing phenotypes can be a manual, iterative, and
labor-intensive process requiring domain expertise [2, 3, 9].
Recent efforts have focused on machine learning developed
methods to automatically generate candidate computational
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Figure 1: Type 2 diabetes phenotype from the Phe-
notype Knowledgebase [6], Source: https://phekb.
org/phenotype/type-2-diabetes-mellitus

phenotypes in a high-throughput, unsupervised manner [7,
8, 10, 18, 20]. However, domain experts are still required to
annotate these candidate phenotypes to verify the clinical
significance, and several issues can arise during the annota-
tion process beyond time–consumption. First, domain ex-
perts may disagree on the clinical relevance of a candidate
phenotype. Second, unsupervised methods may generate
phenotypes that are unfamiliar to annotators, so they may
incorrectly judge a phenotype as clinically insignificant when
it is not. Additionally, given the diverse and different clus-
ters of patients grouped by these methods, annotators may
feel the objective or the phenotypes themselves are vague or
undefined. Thus, there is a need to develop an automated,
data–driven process to serve as an unbiased means of val-
idation, leveraging all the medical expertise that has been
collected to date.

In this paper, we present an automated framework that
can provide third-party verifcation to facilitate and improve
the annotation process and accuracy. Our method records
co–occurrences of phenotypic terms in PubMed1, a publicly

1http://www.ncbi.nlm.nih.gov/PubMed



available repository for medical literature that contains over
40GB of medical literature from over 6000 journals. From
this data, we use lift, a metric that summarizes if two or
more items co–occur more often than average while account-
ing for the commonality of the item, to determine clinical
relevance. We analyze the lift patterns of 80 phenotypes pro-
duced by several of the high–throughput methods described
above and demonstrate the correlation between lift with the
significance as judged by domain experts. We also illustrate
the upper and lower bounds of the lift metric by comparing
phenotypes generated randomly to those curated to repre-
sent known medical concepts. We demonstrate the method
is agnostic to the algorithm that generated the phenotypes
by showing it can effectively determine the validity of candi-
date phenotypes produced by two different high-throughput
algorithms, as well as curated phenotypes. We note how-
ever, that if an algorithm itself uses PubMed to generate
phenotypes, this method of verification should not be used.

2. RELATED WORK
While many researchers have used PubMed to explore and

discover issues in biology, medicine, and health informat-
ics, few have used PubMeb as a validation tool. One such
study by Boland et al. mined EHR records for patients
who had disease-specific codes and then compared the asso-
ciation between birth month and the disease to a group of
control patients who did not have the disease codes present
in their EHRs [1]. They validated their results against pa-
pers queried from PubMed that had disease and birth month
as topics. Neveol et al. did not use Pubmed as a valida-
tion tool but they did use it as a tool to generate candi-
date annotations for PubMed queries and then measured
the inter-annotator agreement as well as annotation time
between sets of queries with and without the candidate an-
notations [13]. While they were annotating PubMed in order
to understand PubMed users’ needs, their work shows that
annotating tools can not only speed up annotating time,
but increase inter-annotator agreement. However, annotat-
ing before annotators can examine the text can have the
effect of biasing annotators, so it should be used carefully.

More commonly, researchers PubMed as an exploratory
tool. Jensen et al. provide a thorough overview of how
PubMed can be harnessed for information extraction and
entity recognition [11]. Amongst the two methods they dis-
cuss for information extraction, natural language processing
and co–occurrence analysis, co–occurrence is more prevalent
due to its straightforward implementation and the intuitive
interpretation of the results. While co–occurrence analysis
does not give information about the type of relationship or
any causal information, work done on bias towards publish-
ing positive results allows for the assumption that when two
phrases occur together the relationship exists [4, 5, 17]. Re-
searchers have applied co-occurrence strategies to generate
phenotypes. Some have used Pubmed to study links be-
tween diseases [16], which can be thought of as phenotype
discovery, and to explore relationships between phenotypes
and genotypes [15]. Having generated phenotypes through
machine learning techniques, our work focuses on using co-
occurrence analysis of Pubmed as a validation tool for an-
notations.

3. METHOD

Annotators are often clinicians volunteering their time,
and may or may not have computational backgrounds or
annotation experience. Furthermore, medical perspectives
can be drastically different amongst annotators as they are
impacted by factors such as their medical expertise, patient
population, and medical education (medical school and res-
idency). In addition to these reasons, the vague and subjec-
tive nature of the annotation task can result in low inter–
rater agreement amongst the different clinicians, with one
high–throughput phenotyping method reporting an inter–
rater agreement of 0.81 [18]. We propose to leverage the 26+
million biomedical literature citations found in PubMed as
an objective third–party annotator by developing an auto-
mated method to capture co-occurrence of phenotypic items
within the clinical narratives described throughout PubMed.
Our framework utilizes the inherent publication biases asso-
ciated with medical literature to observe that if a concept
pairing is clinically significant, several papers will make men-
tion of these concepts together in such a large and diverse
corpus. This provides a reasonable objective baseline for de-
termining significance that can be used as corroboration for
existing annotation or as a tool to assist annotation efforts.

Although the idea is conceptually simple, there are sev-
eral challenges that our automated framework must address.
The representation of each element of the phenotype is im-
portant as it can drastically impact the number of arti-
cles returned during the PubMed query. Second, the co–
occurrence search needs to account for encoding, form/tense,
incorrect spellings, and also regularization. Finally, the co–
occurrence metric should reflect the number of items con-
tained in the phenotype elements as well as the commonal-
ity of the item itself in the PubMed literature. Thus, our
automated verification process consists of several steps:

1. Feature (n-gram) generation from phenotypes

2. Counting co-occurrence in PubMed articles

3. Calculating and normalizing feature lifts within a par-
ticular group to determine significance

Figures 2 and 3 show the process for a phenotype from the
feature generation to the calculation of the clinical signifi-
cance.

3.1 Feature Extraction
Since medical terms can have multiple synonyms and rep-

resentations across different articles, our framework first gen-
erates a suitable list of synonyms and related concepts for
each element in the phenotype (each phenotypic item). The
leftmost box of Figure 2 displays an example of a candidate
phenotype, which was generated by an automatic method,
that could be presented to the annotators. In this example,
the term“heart failure”can also be referred to in various arti-
cles using other terms such “myocardial failure”, “congestive
heart disease”, or may be even be referred to in the con-
text of more general terms such as “cardiovascular health”.
Thus, the appropriate terms must be used so that heart
failure as a concept may be discovered in a PubMed article
reasonably often when it is being mentioned (recall); how-
ever, the terms may not be so general as to produce many
false positives (precision). To produce a representation that
has high recall and high precision, we first generate a large
set of possible representative n-grams, and then filter all the



Figure 2: Feature extraction for Phenotypic Items

candidate n-grams down to the most relevant n-grams (the
filtration process is discussed in the next section).

A näıve approach is to use the item as it appears rather
than to perform the candidate generation and filtration pro-
cess. However, this can yield low recall as the text is often
too specific or not phrased naturally. For example, note
the phenotypic item “calcium channel blocking agents” in
the phenotype in Figure 2. When searching through text,
it may be more appropriate to shorten the phrase to “cal-
cium channel blockers” or even alternatively use the phrase
“hypertension medications.”

Likewise, using a collection of individual words (unigrams)
to represent phenotypes yields high recall, but low precision,
as it is difficult to filter out enough of the words that lack
specificity, but are important in some cases (e.g. “disease”
or “results”). “Calcium”, “channel”, “blocking”, and “agents”
will obviously find all occurrences of “calcium channel block-
ing agents,” but will also capture mentions having little to
do with the subject, resulting in low precision.

In order to achieve high recall, a phenotypic item must be
recognized when a conceptually equivalent or similar term
is present and capture situations when an entirely dissim-
ilar string is used to represent the same item (e.g. “heart
attack” and “myocardial infarction”). In order to recognize
such “aliases,” we utilized several medical ontologies to col-
lect a set of closely related concepts and synonyms to a
given phenotypic item. One of the most complete and com-
monly used ontologies is the “Systemized Nomenclature of
Medicine - Clinical Terms” (SNOMED-CT) ontology [19].
The first order connections on the SNOMED-CT ontology
graph for a concept provided a reasonable number of aliases
that we could then filter. We supplemented SNOMED-CT
with two other common ontologies, ICD–10 and the NCBI
MeSH terms. During implementation, we extracted the

SNOMED-CT and ICD–10 ontologies with a python library
called Pymedtermino.2 Biopython,3 a tool which also pro-
vides an interface to the Entrez tools, provided access to the
MeSH terms. We queried the Pymedtermino and Entrez
APIs to collect aliases from these three ontologies, and then
placed the related terms from each ontology into a (poten-
tially large) list of candidate concepts that may represent the
phenotypic item. After assigning every phenotype a pooled
set of related concepts, we removed stopwords, and then ex-
tracted the set of all unigrams, bi-grams, and tri-grams from
the related concepts.

Figure 2 shows the feature generation process for the phe-
notypic items “heart failure” and “antianginal agents”. For
“heart failure”, our framework generates the related concepts
“congenital heart disease”, “left ventricular structure”, “my-
ocardium”, and “heart valve disorder” as indicated by the
middle column of the figure. In the case of the term “an-
tianginal agents”, the algorithm generates “thyroid struc-
ture”, “hydrochloride”, “morphologic abnormality”and“pen-
butolol product”as potential n–grams. In order to ease com-
putational burden further down the pipeline, in the scenario
when a phenotypic item contains many (greater than 250)
related n-grams, a subset of 250 were randomly selected.
The choice of 250 n-grams allowed sufficient coverage of the
related concepts, while allowing the computation time of the
filtration step to remain feasible.

3.2 Selection and Filtration of candidate
n-grams

After extracting all possible n–grams (unigrams, bigrams,
and/or trigrams) relating to a phenotypic item, our frame-

2http://pythonhosted.org/PyMedTermino/
3http://biopython.org/



Figure 3: Significance calculation for phenotypic items

work determines the n–grams that are most related to the
phenotypic item, which we refer to as the selection and fil-
tration process. This process orders the n–grams generated
from the previous process (e.g., the first and middle column
of 2) by “relevance.” We can then tune the trade-off between
precision and recall by adjusting the number of relevant n–
grams we use to represent each phenotypic item. We explore
the trade-off between precision and recall in Section 4.

We define the “relevance” as the percentage overlap be-
tween the sets of PubMed query results from the original
phenotypic item and each of its representative n-grams and
calculate it by 1) recording the set of papers returned by
each query and 2) finding the size of the intersection be-
tween the set of papers returned for the original item and
each of the subsequent n–gram queries. We tried Word2vec
[12] as a semantic similarity measure, but the empirical re-
sults generated more false positives than our PubMed query-
ing method. Thus, the semantic similarity of the phenotypic
item phrase and its n–grams are roughly measured by the
PubMed search index, rather than a more complicated se-
mantic measure.

Each phenotypic item is assigned a ranked list, based on
the relevance score, of representative n–grams. We refer to
the set of top ranked n-grams as the phenotypic item syn-
onym set. Table 1 shows one example of the original pheno-
typic item and the ranked list with the eight highest ranked
n-grams and their associated relevance scores. For example,
the first synonym ‘lacrimal apparatus diseases’ of the second
item ‘Disorders of lacrimal system’ has a relevance of .636,
which means these phrases appeared together in 63.6% of
Pubmed searches for each phrase separately. Based on our
experimental results, we found selecting fifteen or even ten
of the top ranked n–grams produced a suboptimal number
of false positives. In Section 4 (Figure 6), we show using
six of the top ranked n-grams gives a tolerable number of
false positives. In addition to restricting each representa-
tion to six n-grams, we pared down the list of aliases even
more by ordering the set of all n–grams by their sentence
frequency in PubMed, as well as their interaction frequency
with other phenotypes, and removing the most frequent 5%
from the sentence frequency and interaction frequency lists.

More work on consensus filtration, however, is merited, but
these choices reflect the need to keep the framework as com-
putationally efficient as possible.

3.3 Co-occurrence search in PubMed
NCBI has a publicly available download of PubMed. For

computational reasons, we used a randomly selected subset
of 25% of the articles available in PubMed for this analysis.
In the future we plan to scale to more articles, select the
subset based on when the articles were published, and select
the subset based upon the journal’s impact factor. In the
random subset, we searched for occurrences of elements of
the phenotypic item synonym sets (generated in the last
section) for all items within each phenotype. For all articles
in the subset, any sentence containing one or more of the n-
grams from any phenotypic item was noted, and the set of n-
grams appearing in the sentence was added to a master list of
all co-occurrences. Each sentence was minimally processed,
only regularizing capitalization and encoding (utf-8), taking
out words included in NLTK’s English stopword list, using
a conservative regular expression to remove references (e.g.
Smith, et al.), and removing special characters like quotes
and parenthesis. The form/tense and spelling of words were
left as written to be consistent with the n-grams derived
from the ontology related phrases.

Any occurrence of an n-gram that is a part of the set
of 3 to 6 n-grams (6 is the target, some phenotypic items
have 3, 4, or 5 based upon filtration criteria) representing a
phenotype counted as an appearance for its phenotypic item.
This simplifying assumption eliminated the need to weigh n-
grams by their “relevance.” The assumption also ignores if a
sentence contains more than one n-gram for an item. Using
this measure of co-occurrence, the lift of every co-occurrence
of phenotypic items was calculated. Recall that given A, B,
and C in a sentence:

lift(A,B,C) =
P (A ∩B ∩ C)

P (A) ∗ P (B) ∗ P (C)

Probabilities are calculated as the number of sentences where
the item occurs divided by the total number of sentences.
While studying all possible combinations of phenotypic items



Original representation Ranked list of n–grams

‘Angiotensin-converting enzyme inhibitors’ (‘angiotensin-converting enzyme, inhibitor’, 0.858)
(‘reaction ace inhibitor’, 0.214)
(‘due ace’, 0.207)
(‘hyperkalaemia due angiotensin-converting’, 0.138)
(‘angiotensin-converting-enzy me inhibitor allergy’, 0.082)
(‘inhibitor induced hyperkalemia’, 0.071)
(‘antihypertensive drug disorder’, 0.065)
(‘antihypertensive agent disorder’, 0.065)

‘Disorders of lacrimal system’ (‘lacrimal apparatus diseases’, 0.636)
...

Table 1: One phenotypic item and its associated top eight most highly ranked representative n–grams. The
score represents the percentage overlap of Pubmed searches between the term that appears in the phenotype
and the “synonyms” extracted from various ontologies.

may be interesting for identifying significant subsets of phe-
notype groups or connections between phenotypes, which we
briefly discuss in 5, we primarily examine the average lift of
phenotypic items within a given phenotype. This average lift
of the phenotypic item co-occurrences serves as our primary
metric, and allows for a simple classification of a phenotype
as “clinically significant” or “not clinically significant”–this
classification is discussed below.

For every co-occurrence, all possible subsets of co-occurring
phenotypic items within phenotypes were also counted. For
example, when A, B, C, and D co-occurred in a sentence, a
co-occurrence for (A,B,C), (B,C,D), (A,B), (A,C), and so
forth, were counted. In this way, the lifts for any com-
bination in the power set of all phenotypic items that co-
occurred were counted. This allows for convenient lookup
of any co-occurrence of interest. While this complete set of
co–occurrences is theoretically very large, not every combi-
nation of phenotypes returns a non-empty search.

We made the assumption that co-occurrences including
more phenotypic items (we refer to this as higher “pheno-
type cardinality” for convenience; see the third column of
Figure 4 for examples of this “cardinality”) should be fa-
vored. That is, the more of the phenotype that is repre-
sented, the more can be said about the significance of the
phenotype as a whole. To serve this preference, we counted
co-occurrences with the largest phenotype cardinality first,
and then ignored any co-occurrence that was a subset of
any larger co-occurrence. This was achieved by simply or-
dering the combinations in descending cardinality order, and
greedily inserting the combination into a set if it was not a
subset of an already counted combination. This choice al-
lows co-occurrences of any size to contribute to the average
of a phenotype group but favors interactions including more
phenotypes of the group (without double counting their sub-
sets) assuming this is a better representation of the signifi-
cance of the group as a whole. Note that we exclude empty
co-occurrence sets (those with a lift of 0) from the lift av-
erage, and in future work, we will consider the tradeoffs of
including the lift of these empty sets.

The lift metric divides the probability of co-occurrence
by the product of each of the probabilities of the individual
terms, which normalizes the rate of co-occurrence by the
probability of random chance co-occurrence. If the prob-
ability of co-occurrence is higher than the rate of random

co-occurrence (assuming independence), then the lift will be
greater than 1 and indicates “statistical significance.” How-
ever, since these co-occurrences are subject to grammatical
rules, etc., lifts for co-occurrences are nearly always greater
than 1. As we are interested in filtering out all but clinical
significance (ignoring significance introduced by grammar
and language convention), we randomly generated pheno-
types from a set of phenotypic items, and measured the lift
significance of these “phenotypes” to establish the level of
lift significance introduced by the possible grammatical and
language artifacts.

We began analysis by placing phenotypic item co-occurrences
into groups by their phenotype cardinality (regardless of
the clinical phenotype group membership). We found that,
across all co-occurrences among phenotypic items (this in-
cludes those from multiple phenotypes), lift was strongly
positively dependent on the number of items included in the
co-occurrence. In fact, lift appears to be almost perfectly
exponential as a function of the number of items included in
the co-occurrence, which is illustrated in Figure 5. Thus, we
divide each lift by the median of the lifts of that cardinality
so that higher cardinality co-occurrences do not dominate
the phenotype mean.

We note that the mean and standard deviation of each of
these cardinality groups were skewed high, as the max lifts
were significantly further from the median than the below-
median lifts (Figure 5). Since the standard deviation is ar-
tificially increased by the largest lifts, the normalized above
median lifts are still much greater than zero than the be-
low median lifts are below. This fact makes it so that a lift
threshold is likely to be closer on average to the lift of not
significant phenotypes than to significant phenotypes. Fig-
ure 4 demonstrates the process of extracting the synonyms
for the phenotypic terms, calculating the average standard
deviations that a set of phenotypic terms is above the me-
dian, and then shows the overall average. While the middle
column only contains a subset of the phenotypic item syn-
onym set, the last column contains all the combinations of
phenotypic terms that have non-zero standard deviations
(i.e., the co-occurrence is non-zero). A phenotype is labeled
clinically relevant if the average standard deviation of the
median is above a chosen threshold.

4. EMPIRICAL STUDY



Figure 4: Example of lift calculation process for a phenotype that was found to be significant (i.e., above the
threshold of 0.0284)

4.1 Dataset Description
Our study uses randomly generated phenotypes, pheno-

types curated to represent known significant clinical nar-
ratives and the annotated results of candidate phenotypes
generated by different unsupervised, high–throughput phe-
notype generation processes. The first automatic method,
Rubik [18], generated phenotypes from a de–identified EHR
dataset from Vanderbilt University Medical Center with 7,744
patients over a five year observation period. For more de-
tails about the pre–processing of the data and phenotype
generation, please refer to their paper [18]. The authors
graciously shared the file with 30 computational phenotypes
as well as the annotations of the three domain experts. For
each phenotype, each expert assigned one of the following
three choices: 1) yes - the phenotype is clinically meaning-
ful, 2) possible - the phenotype is possibly meaningful, and
3) not – the phenotype is not clinically meaningful. The sec-
ond set of candidate phenotypes were generated by Marble
[8] using the EHR data of a random subset of 10,000 pa-
tients from the Centers for Medicare and Medicaid Services
(CMS) Linkable 2008-2010 Medicare Data Entrepreneurs’
Synthetic Public Use File (DE-SynPUF), a publicly avail-
able dataset with claim records that span 3 years.4 The
50 candidate phenotypes that Marble generated were then
annotated by two domain experts in a manner identical to
above. We combined the 30 Rubik-generated candidate phe-
notypes with the 50 Marble-generated candidate phenotypes
and used the resulting set of 80 candidate phenotypes in the
co-occurrence experiment. Of these 80 phenotypes, the an-
notators found that approximately 14% are clinically mean-
ingful, 78% are possibly significant and 8% are not clinically
meaningful.

In addition to the high–throughput generated phenotypes,
we used randomly generated phenotypes and curated pheno-
types to establish lower and upper bounds, respectively, for
the lift score that measures phenotype significance. The ran-

4For more information see https://www.
cms.gov/Research-Statistics-Data-and-Systems/
Downloadable-Public-Use-Files/SynPUFs/DE Syn PUF.
html

Figure 5: Log Lifts versus Phenotype Cardinality
from all Combinations of Phenotypic Items from any
Phenotype

dom phenotypes are generated by randomly selecting pheno-
typic items from a set of 1000+ phenotypic items generated
by Marble/Rubik phenotypes not used in this work. The
curated phenotypes were constructed by representing clin-
ical narratives described in Epocrates references5 and the
AHRQ national guidelines6 using phenotypic items.

4.2 Results
To determine the optimal size of the phenotypic item syn-

onym set (i.e., the number of “relevant” n-grams to use),
we performed a grid search over the set sizes, the results
of which are summarized in Figure 6. Figure 6 shows the
precision, recall and F1 score for classifying phenotypes to
their “significant” or “not significant” annotator labels when

5http://www.epocrates.com/
6http://www.ahrq.gov/professionals/clinicians-providers/
guidelines-recommendations/index.html



Figure 6: Classification Scores for Marble/Rubik
Phenotypes versus size of Synonym Set

Figure 7: Normalized Average Lift of Marble/Rubik
Phenotypes

characterized by different numbers of n-grams. The choice
of 6 n-grams resulted in classification with the best balance
between precision and recall, achieving an F1 score of 0.87
(2 N-grams scored 0.88, but had lower precision).

We first examine the normalized lift averages of the ran-
domly generated and curated phenotypes to establish a base-
line for the difference between significant and not significant
phenotypes. Figure 8 shows the distribution of average lifts
for the two groups of phenotypes (represented, again, by a
synonym set of 6 N-grams). In the majority of cases the nor-
malized lift average of the curated phenotypes is above that
of the randomly generated phenotypes. By choosing the op-
timal threshold, we are able to achieve 100% true negative
classification, and 80% true positive classification, or an F1
score of 0.89.

Moving on from the separation of random and curated
phenotypes, we applied this analysis to real world pheno-
types generated by the high-throughput methods. Figure
7 shows the normalized lift average of the phenotypes gen-
erated by Marble and Rubik ([7, 8, 18]). Again, by deter-

Figure 8: Normalized Average Lift of Curated Phe-
notypes

mining the optimal lift threshold (determined to be 0.028
by exhaustion), we are able to classify “significant” and “not
significant” phenotypes with an F1 score of 0.87.

While we do not perform any classification on the possibly
significant groups, we plan to delve into this into the future.
Annotators could use this analysis as evidence to give la-
bels the phenotypes that may be significant. For example,
if an annotator was not sure about the significance, he or
she could use the average lift as another piece of informa-
tion while making the decision. However, a more thorough
analysis of the value of this and whether or not it would bias
an annotator must be studied.

We note that while lift thresholding classifies phenotypes
with relative success in both high-throughput and curated
phenotypes, the method does not provide a universal thresh-
old guaranteed for all phenotypes. In addition, the majority
of phenotypes are very close to the optimal threshold. This
suggests that further work is needed to improve the predic-
tive value of lift thresholding.

5. CONCLUSION
We have presented an automated method for verifying the

significance of phenotype groupings using co-occurrence of
diagnoses/medications within the phenotype in a corpus of
medical literature.

By representing phenotypes as a small set of relevant n-
grams and calculating the lift of phenotypic item co-occurrences
in PubMed, we were able to classify a small set of curated
phenotypes with an F1 score of 0.89, and a set of pheno-
types generated from EHR tensor data with an F1 score of
0.87. While this ground truth set is small, the method shows
promise to provide an objective and automated method of
verification for arbitrary phenotype groups.

Further, since the item co-occurrences are found in nat-
ural language, a set of sentences describing the phenotypic
item co-occurrence can be reported and synthesized into a
human readable explanation for the significance of the phe-
notype. Previous work [13] has shown that annotators pro-
duce better annotations in less time when starting from pre-
annotated results from automatic tools. This implies that
in addition to corroborating human annotation, automatic
labeling can be used to facilitate the annotation process. We



wish to examine this more in the future.
Work to further verify and improve this method is mer-

ited, as a reasonably high level of classification accuracy
was achieved without complex feature selection, or using co-
occurrences from the remaining 75% of available PubMed
articles. With these additions, the method could further
help improve phenotype annotation quality.
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