
NAME: 3

1. (12 points) Search

A

B

C
S

D

G

12

1

3 3

31
1

2

Answer the following questions about the search problem shown above. Break any ties alphabetically. For the
questions that ask for a path, please give your answers in the form ‘S −A−D −G.’

(a) (2 pt) What path would breadth-first graph search return for this search problem?

S −G

(b) (2 pt) What path would uniform cost graph search return for this search problem?

S −A− C −G

(c) (2 pt) What path would depth-first graph search return for this search problem?

S −A−B −D −G

(d) (2 pt) What path would A* graph search, using a consistent heuristic, return for this search problem?

S −A− C −G

4

(e) (4 pt) Consider the heuristics for this problem shown in the table below.

State h1 h2

S 5 4
A 3 2
B 6 6
C 2 1
D 3 3
G 0 0

i. (1 pt) Is h1 admissible? Yes No

ii. (1 pt) Is h1 consistent? Yes No

iii. (1 pt) Is h2 admissible? Yes No

iv. (1 pt) Is h2 consistent? Yes No

An admissible heuristic must underestimate or be equal to the true cost.
A consistent heuristic must satisfy h(N)− h(L) ≤ path(N → L) for all paths and nodes N and L.

h1 overestimates the cost S → G as 5 when it is 4, so it is inadmissible.
h1 is not consistent because h(S)− h(A) ≤ path(S → A) is violated as 5− 3 ≤ 1.
h2 does not overestimate costs and is admissible.
h2 is not consistent because h(S)− h(A) ≤ path(S → A) is violated as 4− 2 ≤ 1.

Q2. [17 pts] CSPs: Midterm 1 Staff Assignments
CS188 Midterm I is coming up, and the CS188 staff has yet to write the test. There are a total of 6 questions on
the exam and each question will cover a topic. Here is the format of the exam:

• q1. Search

• q2. Games

• q3. CSPs

• q4. MDPs

• q5. True/False

• q6. Short Answer

There are 7 people on the course staff: Brad, Donahue, Ferguson, Judy, Kyle, Michael, and Nick. Each of them
is responsible to work with Prof. Abbeel on one question. (But a question could end up having more than one
staff person, or potentially zero staff assigned to it.) However, the staff are pretty quirky and want the following
constraints to be satisfied:

(i) Donahue (D) will not work on a question together with Judy (J).

(ii) Kyle (K) must work on either Search, Games or CSPs

(iii) Michael (M) is very odd, so he can only contribute to an odd-numbered question.

(iv) Nick (N) must work on a question that’s before Michael (M)’s question.

(v) Kyle (K) must work on a question that’s before Donahue (D)’s question

(vi) Brad (B) does not like grading exams, so he must work on True/False.

(vii) Judy (J) must work on a question that’s after Nick (N)’s question.

(viii) If Brad (B) is to work with someone, it cannot be with Nick (N).

(ix) Nick (N) cannot work on question 6.

(x) Ferguson (F) cannot work on questions 4, 5, or 6

(xi) Donahue (D) cannot work on question 5.

(xii) Donahue (D) must work on a question before Ferguson (F)’s question.

4

(a) [2 pts] We will model this problem as a constraint satisfaction problem (CSP). Our variables correspond to each
of the staff members, J, F, N, D, M, B, K, and the domains are the questions 1, 2, 3, 4, 5, 6. After applying
the unary constraints, what are the resulting domains of each variable? (The second grid with variables and
domains is provided as a back-up in case you mess up on the first one.)

B 5
D 1 2 3 4 6
F 1 2 3
J 1 2 3 4 5 6
K 1 2 3
N 1 2 3 4 5
M 1 3 5

(b) [2 pts] If we apply the Minimum Remaining Value (MRV) heuristic, which variable should be assigned first?

Brad – because he has the least values left in his domain.

(c) [3 pts] Normally we would now proceed with the variable you found in (b), but to decouple this question from
the previous one (and prevent potential errors from propagating), let’s proceed with assigning Michael first.
For value ordering we use the Least Constraining Value (LCV) heuristic, where we use Forward Checking to
compute the number of remaining values in other variables domains. What ordering of values is prescribed by
the LCV heuristic? Include your work—i.e., include the resulting filtered domains that are different for the
different values.

Michael’s value will be assigned as 5, 3, 1, in that order.

Why these variables? They are the only feasible variables for Michael. Why this order? This is the increasing
order of the number of constraints on each variable.

The only binary constraint incolving Michael is “Nick (N) must work on a question that’s before Michael (M)’s
question.” So, only Nick’s domain is affected by forward checking on these assignments, and it will change
from {1, 2, 3, 4, 5} to {1, 2, 3, 4}, {1, 2}, and { } for the assignments 5, 3, 1, respectively.

(d) Realizing this is a tree-structured CSP, we decide not to run backtracking search, and instead use the efficient
two-pass algorithm to solve tree-structured CSPs. We will run this two-pass algorithm after applying the unary
constraints from part (a). Below is the linearized version of the tree-structured CSP graph for you to work with.

(i) [6 pts] First Pass: Domain Pruning. Pass from right to left to perform Domain Pruning. Write the
values that remain in each domain below each node in the figure above.

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

5

Remaining values in each domain after the domain pruning right-to-left pass:
Kyle: 1
Donahue: 1,2
Ferguson: 1,2,3
Judy: 2,3,4,5,6
Nick: 1,2,3,4
Brad: 5
Michael: 1,3,5

(ii) [4 pts] Second Pass: Find Solution. Pass from left to right, assigning values for the solution. If there
is more than one possible assignment, choose the highest value.

Assigned Values after the left-to-right pass:

Kyle: 1
Donahue: 2
Ferguson: 3
Judy: 6
Nick: 4
Brad: 5
Michael: 5

6

Q6. [10 pts] Pruning and Child Expansion Ordering
The number of nodes pruned using alpha-beta pruning depends on the order in which the nodes are expanded. For
example, consider the following minimax tree.

In this tree, if the children of each node are expanded from left to right for each of the three nodes then no pruning
is possible. However, if the expansion ordering were to be first Right then Left for node A, first Right then Left for
node C, and first Left then Right for node B, then the leaf containing the value 4 can be pruned. (Similarly for first
Right then Left for node A, first Left then Right for node C, and first Left then Right for node B.)

For the following tree, give an ordering of expansion for each of the nodes that will maximize the number of leaf
nodes that are never visited due the search (thanks to pruning). For each node, draw an arrow indicating
which child will be visited first. Cross out every leaf node that never gets visited.
Hint: Your solution should have three leaf nodes crossed out and indicate the child ordering for 6 of the 7 internal
nodes.

The thing to understand here is how pruning works conceptually. A node is pruned from under a max node if it
“knows” that the min node above it has a better – smaller – value to pick than the value that the max node just
found. Similarly, a node is pruned from under a min node if it knows that the max node above it has a better –
larger – value to pick than the value that the min node just found.

13

Q3. [11 pts] Solving Search Problems with MDPs
The following parts consider a Pacman agent in a deterministic environment. A goal state is reached when there are
no remaining food pellets on the board. Pacman’s available actions are {N,S,E,W}, but Pacman can not move
into a wall. Whenever Pacman eats a food pellet he receives a reward of +1.

Assume that pacman eats a food pellet as soon as he occupies the location of the food pellet—i.e., the reward
is received for the transition into the square with the food pellet.

Consider the particular Pacman board states shown below. Throughout this problem assume that V0(s) = 0 for
all states, s. Let the discount factor, γ = 1.

State A State B

(a) [2 pts] What is the optimal value of state A, V ∗(A)?
1

(b) [2 pts] What is the optimal value of state B, V ∗(B)?
1
The reason the answers are the same for both (b) and (a) is that there is no penalty for existing. With a
discount factor of 1, eating the food at any future step is just as valuable as eating it on the next step. An
optimal policy will definitely find the food, so the optimal value of any state is always 1.

(c) [2 pts] At what iteration, k, will Vk(B) first be non-zero?

5
The value function at iteration k is equivalent to the maximum reward possible within k steps of the state in
question, B. Since the food pellet is exactly 5 steps away from Pacman in state B, V5(B) = 1 and VK<5(B) = 0.

(d) [2 pts] How do the optimal q-state values of moving W and E from state A compare? (choose one)

© Q∗(A,W) > Q∗(A,E) © Q∗(A,W) < Q∗(A,E) Q∗(A,W) = Q∗(A,E)

Once again, since γ = 1, the optimal value of every state is the same, since the optimal policy will eventually
eat the food.

(e) [3 pts] If we use this MDP formulation, is the policy found guaranteed to produce the shortest path from
pacman’s starting position to the food pellet? If not, how could you modify the MDP formulation to guarantee
that the optimal policy found will produce the shortest path from pacman’s starting position to the food pellet?

No. The Q-values for going West and East from state A are equal so there is no preference given to the
shortest path to the goal state. Adding a negative living reward (example: -1 for every time step) will help
differentiate between two paths of different lengths. Setting γ < 1 will make rewards seen in the future worth
less than those seen right now, incentivizing Pacman to arrive at the goal as early as possible.

7

NAME: 11

5. (13 points) MDPs: Treasure Hunting

While Pacman is out collecting all the dots from mediumClassic, Ms. Pacman takes some time to go treasure
hunting in the Gridworld island. Ever prepared, she has a map that shows where all the hazards are, and
where the treasure is. From any unmarked square, Ms. Pacman can take the standard actions (N, S, E, W),
but she is surefooted enough that her actions always succeed (i.e. there is no movement noise). If she lands in
a hazard (H) square or a treasure (T) square, her only action is to call for an airlift (X), which takes her to the
terminal ‘Done’ state, receiving a reward of -64 if she’s escaping a hazard, but +128 if she’s running off with
the treasure. There is no “living reward.”

(a) (2 pt) What are the optimal values, V ∗ of each state in the above grid if γ = 0.5?
Solution:

128 64 32

-64 -64 16

2 4 8

(b) (1 pt) What’s the optimal policy?
Solution:

X W W

X X N

E E N

Call this policy π0. Ms. Pacman realizes that her map might be out of date, so she decides to do some
Q-learning to see what the island is really like. Because she thinks π0 is close to correct, she decides
to Q-learn while following an ε-random policy based on (b). Specifically, with probability ε she chooses
amongst the available actions uniformly at random. Otherwise, she does what π0 recommends. Call this
policy πε.
An ε-random policy like πε is an example of a stochastic policy, which assigns probabilities to actions rather
than recommending a single one. A stochastic policy can be written as π(s, a), the probability of taking
action a when the agent is in state s.

12

(c) (2 pt) Write out a modified Bellman equation for policy evaluation when the policy π(s, a) is stochastic.
Solution:

V π(s) =
∑
a

π(s, a)
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)]

We also accepted answers specifically for πε, written in terms of ε, As, the set of legal actions from s, and
Succ(s, a), the state reached by taking action a from state s:

V πε(s) = (1− ε) [R(s, π0(s), Succ(s, π0(s))) + γV πε(Succ(s, π0(s)))] +
ε

|As|
∑
a

[R(s, a, Succ(s, a)) + γV πε(Succ(s, a))]

(d) (1 pt) If Ms. Pacman’s map is correct what relationship will hold for all states?
i. V π0 ≥ V πε

ii. V π0 = V πε

iii. V π0 ≤ V πε

Solution:
(i) will hold because π0 is optimal.
It turns out that Ms. Pacman’s map is mostly correct, but some of the fire pits may have fizzled out and
become regular squares! Thus, when she starts Q-learning, she observes the following episodes:
[(0, 0), N, 0, (0, 1), N, 0, (0, 2), X, 128, Done]
[(0, 0), N, 0, (0, 1), N, 0, (0, 2), X, 128, Done]
[(0, 0), N, 0, (0, 1), E, 0, (1, 1), X, -64, Done]

(e) (2 pt) What are Ms. Pacman’s Q-values after observing these episodes? Assume that she initialized her
Q-values all to 0 (you only have to write the Q-values that aren’t 0) and used a learning rate of 1.0.

Solution:
Q((0, 2), X) = 128
Q((0, 1), N) = 64
Q((0, 0), N) = 32
Q((1, 1), X) = −64
Q((0, 1), E) = 0

(f) (2 pt) In most cases, a learning rate of 1.0 will result in a failure to converge. Why is it safe for Ms.
Pacman to use a learning rate of 1.0?

Solution:
Ms. Pacman’s actions are deterministic, so she does not need to average over possible outcomes of a
particular action.

(g) (1 pt) Based on your knowledge about the structure of the maze and the episodes Ms. Pacman observed,
what are the true optimal values of each state?
Solution:

128 64 32

64 -64 16

32 16 8

Q5. [12 pts] Independence in Hidden Markov Models
Below is a full derivation of the forward algorithm updates for Hidden Markov Models. As seen in lecture, we used
e1:t to denote all the evidence variables e1, e2, . . . , et. Similarly, e1:t−1 denotes e1, e2, . . . , et−1. For reference, the
Bayes net corresponding to the usual Hidden Markov Model is shown on the right side of the derivation below.

P (xt|e1:t) ∝ P (xt, e1:t) (1)

=
∑
xt−1

P (xt−1, xt, e1:t) (2)

=
∑
xt−1

P (xt−1, xt, e1:t−1, et) (3)

=
∑
xt−1

P (et | xt−1, xt, e1:t−1)P (xt−1, xt, e1:t−1) (4)

=
∑
xt−1

P (et | xt)P (xt−1, xt, e1:t−1) (5)

=
∑
xt−1

P (et | xt)P (xt | xt−1, e1:t−1)P (xt−1, e1:t−1) (6)

=
∑
xt−1

P (et | xt)P (xt | xt−1)P (xt−1, e1:t−1) (7)

= P (et | xt)
∑
xt−1

P (xt | xt−1)P (xt−1, e1:t−1) (8)

. . . Xt−1 Xt
. . .

. . . Et−1 Et
. . .

(a) [2 pts] The following assumption(s) are needed to justify going from step (4) to step (5):

(select all that apply) also correct to select first on left and first on right

 Et ⊥⊥ Xt−1 | Xt

 Et ⊥⊥ Ek | Xt for all 1 ≤ k ≤ t− 1

© Et ⊥⊥ Ek for all 1 ≤ k ≤ t− 1

© Et ⊥⊥ Et+1 | Xt

© Et ⊥⊥ Ek | Xt−1 for all 1 ≤ k ≤ t− 1

© Xt ⊥⊥ Et+1 | Xt+1

© Xt ⊥⊥ Ek | Xt−1 for all 1 ≤ k ≤ t− 1

© none

(b) [2 pts] The following assumption(s) are needed to justify going from step (5) to step (6):

(select all that apply)

© Et ⊥⊥ Xt−1 | Xt

© Et ⊥⊥ Ek | Xt for all 1 ≤ k ≤ t− 1

© Et ⊥⊥ Ek for all 1 ≤ k ≤ t− 1

© Et ⊥⊥ Et+1 | Xt

© Et ⊥⊥ Ek | Xt−1 for all 1 ≤ k ≤ t− 1

© Xt ⊥⊥ Et+1 | Xt+1

© Xt ⊥⊥ Ek | Xt−1 for all 1 ≤ k ≤ t− 1

 none

(c) [2 pts] The following assumption(s) are needed to justify going from step (6) to step (7):

(select all that apply)

© Et ⊥⊥ Xt−1 | Xt

© Et ⊥⊥ Ek | Xt for all 1 ≤ k ≤ t− 1

© Et ⊥⊥ Ek for all 1 ≤ k ≤ t− 1

© Et ⊥⊥ Et+1 | Xt

© Et ⊥⊥ Ek | Xt−1 for all 1 ≤ k ≤ t− 1

© Xt ⊥⊥ Et+1 | Xt+1

 Xt ⊥⊥ Ek | Xt−1 for all 1 ≤ k ≤ t− 1

© none

9

Hidden Markov Models can be extended in a number of ways to incorporate additional relations. Since the indepen-
dence assumptions are different in these extended Hidden Markov Models, the forward algorithm updates will also
be different.

Complete the forward algorithm updates for the extended Hidden Markov Models specified by the following Bayes
nets:

(d) [2 pts] P (xt|e1:t) ∝
∑

xt−1
P (xt−1, e1:t−1) · P (et | xt, xt−1)P (xt | xt−1)

. . . Xt−1 Xt Xt+1 . . .

. . . Et−1 Et Et+1 . . .

P (xt|e1:t) ∝ P (xt, e1:t) =
∑
xt−1

P (xt−1, xt, e1:t−1, et)

=
∑
xt−1

P (et | xt−1, xt, e1:t−1)P (xt−1, xt, e1:t−1)

=
∑
xt−1

P (et | xt, xt−1)P (xt−1, xt, e1:t−1)

=
∑
xt−1

P (et | xt, xt−1)P (xt | xt−1, e1:t−1)P (xt−1, e1:t−1)

=
∑
xt−1

P (et | xt, xt−1)P (xt | xt−1)P (xt−1, e1:t−1)

(e) [2 pts] P (xt|e1:t) ∝
∑

xt−1
P (xt−1, e1:t−1) · P (et | xt, et−1)P (xt | xt−1)

. . . Xt−1 Xt Xt+1 . . .

. . . Et−1 Et Et+1 . . .

10

P (xt|e1:t) ∝ P (xt, e1:t) =
∑
xt−1

P (xt−1, xt, e1:t−1, et)

=
∑
xt−1

P (et | xt−1, xt, e1:t−1)P (xt−1, xt, e1:t−1)

=
∑
xt−1

P (et | xt, et−1)P (xt−1, xt, e1:t−1)

=
∑
xt−1

P (et | xt, et−1)P (xt | xt−1, e1:t−1)P (xt−1, e1:t−1)

=
∑
xt−1

P (et | xt, et−1)P (xt | xt−1)P (xt−1, e1:t−1)

(f) [2 pts] P (xt, xt+1|e1:t) ∝
∑

xt−1
P (xt−1, xt, e1:t−1) · P (et | xt)P (xt+1 | xt−1, xt)

. . . Xt−1 Xt Xt+1 . . .

. . . Et−1 Et Et+1 . . .

P (xt, xt+1|e1:t) ∝ P (xt, xt+1, e1:t) =
∑
xt−1

P (xt−1, xt, xt+1, e1:t−1, et)

=
∑
xt−1

P (et | xt−1, xt, xt+1, e1:t−1)P (xt−1, xt, xt+1, e1:t−1)

=
∑
xt−1

P (et | xt)P (xt−1, xt, xt+1, e1:t−1)

=
∑
xt−1

P (et | xt)P (xt+1 | xt, xt−1, e1:t−1)P (xt, xt−1, e1:t−1)

=
∑
xt−1

P (et | xt)P (xt+1 | xt, xt−1)P (xt, xt−1, e1:t−1)

11

