
CCIS 4100: Midterm

3/3/2017

This exam comprises 4 multi-part questions. You have the entire class period
(∼1 hour 30 minutes and some change) to complete it; it must be turned in
by 5:05pm. Hopefully you won’t need the whole period! But in any case,
budget your time accordingly; answer questions concisely. You may
use a calculator, but you shouldn’t need one.

Questions 3 and 4 use a shared game/setup, so do invest the time to read
carefully about the game introduced in Question 3.

All answers need to be written on this exam. You may use the blank
pages interspersed.

Good luck, the robots are rooting for you!

Your name:

1

1 Definitions and Concepts (20 points)

Answer the following short-answer questions concisely, as in 2 sentences per
question at most.

a. What is the basic aim of reinforcement learning? (2 points)
Answer: To learn an optimal policy from observed (state, action, reward)
triplets.

b. Define arc-consistency. (2 points)
Answer: Xi is arc-consistent w.r.t. Xj iff for every value vi that it may still be
assigned, there exists at least one value vj that Xj might be assigned that is
consistent with vi (does not violate binary constraints on Xi, Xj).

c. What makes a heuristic admissible for A* search? (2 points)
Answer: It needs to be optimistic, i.e., never over-estimate the true distance to
the goal.

d. When is a search algorithm complete? Is Depth First Search (DFS) complete?
(2 points)
Answer: A search algorithm is complete if it is guaranteed to find a solution if
one exists. Yes.

e. Describe a scenario (i.e., a search state problem) in which iterative deepening
search performs much worse than DFS. (2 points)
Answer: One such scenario is when the solution is to be found at the bottom left
of the tree (assume DFS branches left first). In this case, DFS will go straight to
the solution, while iterative deepening will explore large swathes of the search
tree.

f. Explain the relationship between Uniform Cost Search (UCS) and Breadth
First Search (BFS). (2 points)
Answer: UCS reduces to BFS if edge costs are uniform.

g. In Constraint Satisfaction Problems (CSPs), what is the heuristic often used
to select variables? Once selected, what is the heuristic then often used to select
a corresponding value? (2 points)

Answer: To select a variable, choose the most constrained variable; to assign it

2

a value, choose the least constraining option from its domain.

h. In the context of Markov Decision Processes (MDPs), what is the effect of
the discounting factor γ, why did we introduce this? (2 points)
Answer: This makes the agent prefer collecting rewards sooner rather than
later. Recall that this prevented the ‘thrashing’ behavior we saw in PacMan
when he didn’t care when he would collect the pellet (only that he eventually
would).

i. In the context of adversarial search, what are evaluation functions and
why/when are they used? (2 points)
Answer: These are functions that attempt to provide an estimate regarding the
min or max value of a given node, usually using a linear function of ‘features’
that describe the corresponding state. These can be used to avoid having to
explore impractically large search trees.

j. Why is temporal difference (TD) learning of Q-values (Q-learning) usually
preferable to TD-learning of values? (2 points)
Answer: Q-values allow us to decide how to act; the state values themselves do
not tell us this.

3

2 Search (25 points)

Figure 1: A search graph with multiple goal states and heuristic values under
heuristic function h1.

Consider the search graph above where node A is the start state and there
are two goal states, G1 and G2. Values on edges denote path costs. The table
provides the values of a heuristic function, which is a proxy or estimate of the
distance to a goal state.

4

a. Using the A* search algorithm, which goal state is reached first? Show all
calculations performed by A*. (15 points)

Answer : A* uses the function f(n) = g(n)+h(n) to evaluate which node should
be expanded next.
Expanding different paths
A : f(A) = g(A) + h(A) = 0 + 6 = 6

Moving ahead with the only option expanding node A.
A - B : f(B) = g(B) + h(B) = 3 + 3 = 6
A - C : f(C) = g(C) + h(C) = 5 + 2 = 7
A - D : f(D) = g(D) + h(D) = 4 + 1 = 5

Selecting the path with the minimum f(n) value, A - D.
A - D - H: f(H) = g(H) + h(H) = 8 + 1 = 9

Next minimum f(n) value is 6 for path A - B.
A - B - E : f(E) = g(E) + h(E) = 5 + 1 = 6
A - B - C : f(D) = g(C) + h(C) = 4 + 2 = 6

As both the paths have same path breaking the tie randomly and selecting path
A - B - E
A - B - E - G2 : f(G2) = g(G2) + h(G2) = 8 + 0 = 8

Although we have reached a goal state, the search does not end until the goal
state is chosen for expansion.
A - B - C - F : f(F) = g(F) + h(F) = 6 + 1 = 7
A - B - C - G1 : f(G1) = g(G1) + h(G1) = 9 + 0 = 9
A - B - C - H : f(H) = g(H) + h(H) = 7 + 1 = 8

Next, we pick the path with minimum f(n) value.
A - B - C - F - G1 : f(G1) = g(G1) + h(G1) = 7 + 0 = 7

We have reached both the goal states now, we pick the path with the minimum
value. Hence, goal state G1 is chosen for expansion and this is when the search
ends. Finally, we conclude that the search reaches goal state G1 first. The path
obtained to reach the goal state would be A - B - C - F - G1.

b. Is the h1 heuristic admissible? Justify your answer. (5 points)

Answer : Yes, h1 heuristic is admissible because the heuristic function values at
each node is less than equal to the actual cost of reaching the goal state from
that node. It does not overestimate the distance to the goal state at any node.
c. Is h1 heuristic consistent? If not, provide an example of where the heuristic

is inconsistent. (5 points)

Answer : No, h1 heuristic is inconsistent because the heuristic function value at
node D doesn’t satisfy the consistency criteria h(D)−h(H) <= ActualCost(D−
H).

5

3 Reinforcement learning (30 points)

rot: rotate 45 degrees right

form a square in bottom
cell: reward = 10

{l,r}: move one cell left or right

(B) Actions(A) Example of ongoing game

(C) Possible end-states for triangles and rewards

Instantaneous reward=0 elsewhere

{rot, l, r, ∅}

collisions!
reward = -5

placed on bottom
row: reward = 0

1

1 2 3 4

2

3

4
∅ no action

Figure 2: A simple tetris-like game played on a 4x4 grid.

Consider a simple tetris-like game played on a 4x4 grid, as pictured in Figure
2, (A). At the start the grid is clear. One triangle ’falls’ from the top at a time;
it is placed in a random cell at the top of the grid to begin with. At each time
step, the falling triangle will move 1 square down. You get points for placing
two triangles in a bottom grid cell such that they form a square, as shown
in (C). (Note that the colors are purely aesthetic here.) If you do this, the
corresponding cell clears and you get 10 points.

Falling triangles can either: (1) reach the bottom row and form a square, (2)
reach the bottom row in an empty cell, or (3) attempt to enter a bottom row cell
already occupied in an incompatible way. In this game, (3) happens whenever
the falling triangle attempts to enter a bottom row cell already occupied by a
triangle that is not positioned with one of its legs along the bottom; i.e., only
the positions depicted in cells (4,1) and (4,3) in example (A) can result in square
formation; (4,2) can not. Even in the former cases, the falling triangle must be
positioned correctly to avoid a collision. When a falling triangle ‘collides’ with
one in the bottom row, a reward of -5 is incurred.

6

We are going to formulate this game as a Reinforcement Learning (RL) task,
where the aim is for the agent to learn how to play well. The actions available
to the agent are {rot, l, r, ∅}, as shown in the figure. You can assume these are
deterministic. Note that you can only rotate the triangle 45 degrees right at a
time. Also note that if ∅ is taken, the triangle will still automatically move 1
square down (it always does, regardless of the action).

a. As defined, one triangle at a time falls and eventually reaches one of 3 ‘ter-
minal’ states, at which point another triangle drops. For simplicity, we will
assume that the RL agent treats each new triangle as an independent ‘game’ to
be played. This in contrast to treating all T steps as one longer game, spanning
multiple triangle descents (in this case, a reward would only be experienced at
the end of play as your final score, which would have spanned multiple trian-
gles). Is this a reasonable simplification? Make a concise, concrete argument to
support your position, that is, for or against the strategy of observing rewards
every time an individual triangle reaches an end-state. (5 points)

Answer :
Arguments in both directions were acceptable. Here is a sample of rationales

for each.
This is NOT a reasonable simplification, because:

• Basically, any rationale pointing out that this will make it difficult for the
agent to learn how to place the first triangle in an empty bottom row.

This is a reasonable simplification, because:

• Rewards are experienced more proximately to Q-states. For instance, if
we correctly place the second triangle to form a square with the first, then
we will immediately experience this reward. Whereas if T is long, the
reward signal for this (successful) action may be quite far in the future!

• When squares are formed they are cleared anyway. Thus this strategy
should still allow the agent to learn to place itself at a right-angle when
the bottom row is empty and then on top of this when one such triangle
has been positioned. The optimal player will just repeat this simple greedy
strategy anyway; no longer range patterns need to be learned.

• This approach allows one to learn while playing in a given round. Thus we
can, e.g., update Q-value estimates during play; this would not be possible
if we wait until T steps expire to observe a reward.

7

b. Define a state-space that will be sufficient to learn to play this game. As-
suming a naive encoding, what is the size of this space? (You do not need to
evaluate this; writing it as a product is fine.) (10 points)

Answer : For this problem, a state needs to encode: (1) the position in the grid
of the falling triangle; (2) its orientation (one of 8, since we can move 45 degrees
at a time); (3) which of the four bottom row cells are occupied and (4) the
orientation of the occupying triangles. So naively, this results in 4 × 4 = 16
position states × 8 orientation × 24 = 16 bottom row states × 8 orientation
states, or: 16× 8× 16× 8 unique states (roughly 16,000 states).

c. Temporal Difference Q-Learning (TDL) (10 points)
c. Temporal Di↵erence Q-Learning (TDL) (10 points)

1

1 2 3 4

2

3

4

rot

+10

t t+1

Figure 3: State s at time t and state s’ at time t+1 after taking action rot.

Assume the board state at time t is as depicted in 3 (left), so you are at (3,3)
and then select the action rot and end up in the state depicted in the right of
the Figure (time t+1). results in a reward of +10. Suppose we currently have
an estimate Q̂(s, rot) = 5.0; further suppose our learning rate ↵ is .5. What is
the estimate after this event?

Answer : This is just a straight-forward application of sample-based Q-learning.
In general: Q̂(s, a) (1 � ↵) · Q̂(s, a) + ↵ · R(s, a, s0) + � · maxaQ̂(s0, a0),
but here this reduces to simply Q̂(s, a) (1 � ↵) · Q̂(s, a) + ↵ · reward =
(.5) · 5 + (.5) · 10 = 7.5.

7

Figure 3: State s at time t and state s’ at time t+1 after taking action rot.

Assume the board state at time t is as depicted in Figure 3 (left), so you are at
(3,3) and then select the action rot and end up in the state depicted in the right
of the Figure (time t+1). results in a reward of +10. Suppose we currently have
an estimate Q̂(s, rot) = 5.0; further suppose our learning rate α is .5. What is
the estimate after this event?

Answer : This is just a straight-forward application of sample-based Q-learning.
In general: Q̂(s, a) ← (1 − α) · Q̂(s, a) + α · R(s, a, s′) + γ · maxaQ̂(s′, a′),
but here this reduces to simply Q̂(s, a) ← (1 − α) · Q̂(s, a) + α · reward =
(.5) · 5 + (.5) · 10 = 7.5.

d. In light of your answer to (b), what’s a potential problem with standard
Q-learning here? (Consider what happens if we move to an even larger board,
say, 16x16.) What could we do, concretely, to address this problem? (5 points)

Answer : The state space – and hence Q learning table – is very large, and
completely unmanageable if the board size increases further. We would want to
use generalized Q-learning, i.e., rather than store a table for state/action pairs,

8

we would represent these via features. For example, such features might include
indicator features for each of the bottom rows, the distance to the bottom, etc.

4 Game playing (25 points)

We will now extend the simplified tetris-like game introduced above to a two-
player game; you will now face off against an adversarial agent. The adversary
has access to the same 4 moves {rot, l, r, ∅} that she also plays while the triangle
is dropping; so at each time step, you make a move and then the adversary does.
The adversary wants to minimize the score.

a. Assume again that the board is in the state depicted in Figure 3 (left hand
side; time t). You are going to draw a partial minimax tree from this state.
Specifically, this is to include (1) all possible moves you have, and then (2)
expand the possible countermoves your adversary has assuming you have chosen
rot. I am not asking you to draw the entire two-move minimax tree! (We assume
her move follows yours and no further moves are possible once the bottom row
is reached). Fill in the terminal nodes in the tree with values. Please order
edges in the tree, from left to right, as given, i.e.,: {rot, l, r, ∅}. What is the
min value for the adversary given your play of rot? (7 points)

9

Answer :

1

1 2 3 4

2

3

4

rot

+10

t t+1

rot
l r

∅

rot
l r

∅

100-5-5 1

1 2 3 4

2

3

4

rot

+10

t t+1

1

1 2 3 4

2

3

4

rot

+10

t t+1

1

1 2 3 4

2

3

4

rot

+10

t t+1

Figure 4: Tetris Game Tree with an adversarial agent

The min value is -5.

10

b. Now assume you choose to move left (l). Expand min’s node from this
starting place. Using α-β pruning, and the result from the preceding question
(a): can we prune any of the edges here? If so, which? (8 points)
Answer :

1

1 2 3 4

2

3

4

rot

+10

t t+1

rot
l r

∅

rot
l r

∅

-5-50-5 1

1 2 3 4

2

3

4

rot

+10

t t+1

1

1 2 3 4

2

3

4

rot

+10

t t+1

1

1 2 3 4

2

3

4

rot

+10

t t+1

Figure 5: Expanding the min node assuming we’ve taken action l.

The α value from (a) is -5. We can prune the three rightmost moves (dotted
lines and boxes) because min can choose rot which gives −5 ≤ α.

c. According to mini-max, is rot preferable to l? Why or why not? (3 points)

Answer : Mini-max says they are equivalent (both have a terminal value of -5
under optimal play by our opponent).

d. Now assume that the adversary is playing nondeterministically. Specifically,
assume she selects the optimal play with probability 0.80 (4/5) and does nothing
(that is, plays ∅) otherwise. Calculate the expected values of the rot and l
actions. According to expecti-max, is one of these preferable to the other? (7
points)

Answer :
For rot : 4

5 · −5 + 1
5 · (10) = −4 + 2 = −2

For l : 4
5 · −5 + 1

5 · −5 = −5.
Thus rot is preferable under expecti-max.

11

