
instructor: byron wallace
CS 4100 // artificial intelligence

Supervised learning 2

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Also, some of the Neural Network slides here are derived from Ray Mooney’s.

Last time: Naïve Bayes
A general Naive Bayes model:

• We only have to specify how each feature depends on the class
• Total number of parameters is linear in n
• Model is very simplistic, but often works anyway

Y

F1 FnF2

|Y|	parameters

n	x	|F|	x	|Y|	
parameters

|Y|	x	|F|n values

Last time: Naïve Bayes

Naïve Bayes is a generative model
Estimates P(X,y)

Today we’ll introduce a discriminative approach
Estimates P(y|X)

Last time: Spam v ham

Last time: Spam v ham

Dear	Sir.

First,	I	must	solicit	your	confidence	in	
this	transaction,	this	is	by	virture of	its	
nature	as	being	utterly	confidencial and	
top	secret.	…

Ok,	Iknow this	is	blatantly	OT	but	I'm	
beginning	to	go	insane.	Had	an	old	Dell	
Dimension	XPS	sitting	in	the	corner	and	
decided	to	put	it	to	use,	I	know	it	was	
working	pre	being	stuck	in	the	corner,	
but	when	I	plugged	it	in,	hit	the	power	
nothing	happened.

Errors
Examples of errors (words are not always enough!)

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .

Features

What to do about errors?
Need more features– words aren’t enough!

• Have you emailed the sender before?
• Have 1K other people just gotten the same email?
• Is the sending information consistent?
• Is the email in ALL CAPS?
• Do inline URLs point where they say they point?
• Does the email address you by (your) name?

Can add these information sources as new
variables in the NB model; but this isn’t always
natural or easy in “generative” models like NB

Today we will discuss models that make it easy to
add arbitrary features

Linear classifiers

Feature vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

“Neural” models: where the name comes from
• Very loose inspiration: human neurons

Linear classifiers
Inputs are feature values
Each feature has a weight
Sum is the activation

If the activation is:
• Positive, output +1
• Negative, output -1 S

f1
f2
f3

w1

w2

w3
>0?

Weights
• Binary case: compare features to a weight vector
• Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...Dot product positive the positive class

Decision rules

Binary decision rule
In the space of feature vectors
• Examples are points
• Any weight vector is a hyperplane
• One side corresponds to Y=+1
• Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m
on

ey

+1	=	SPAM

-1	=	HAM

Weight updates

Learning: Binary perceptron
Start with weights = 0
For each training instance:

• Classify with current weights

• If correct (i.e., y=y*), no change!

• If wrong: adjust the weight vector

Start with weights = 0
For each training instance:

• Classify with current weights

• If correct (i.e., y=y*), no change!
• If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Learning: Binary perceptron

Examples: Perceptron
Separable Case

y

.4

-.2

.1

Training data

y

-1
1

.1

.3
.4
.8

x2

x1
~

Perceptron

y=1

.4

-.2

.1

Training data
net = .8*.4 + .3*-.2 = .26

y

-1
1

.1

.3
.4
.8

x2

x1
~

Perceptron

.4

-.2

.1

Training data
net = .8*.4 + .3*-.2 = .26

y

-1
1

.1

.3
.4
.8

x2

x1
y=1~

Perceptron

.4

-.2

.1

Training data

y

-1
1

.1

.3
.4
.8

x2

x1

net = .4*.4 + .1*-.2 = .14

y=1~

Perceptron

Perceptron

.4

-.2

.1

Training data

y

-1
1

.1

.3
.4
.8

x2

x1

net = .4*.4 + .1*-.2 = .14

y=1~

Perceptron: updating

Dwj = a (y	- y) * xij

true label
prediction

‘learning weight’

~

w = w	+	Dw

Dwj = a (y	- y) * xij

true label
prediction

‘learning weight’

Perceptron: updating

~

.4

-.2

.1

Training	data

y

-1
1

.1

.3
.4
.8

x2

x1

net = .4*.4 + .1*-.2 = .14

wt = [.4, -.2]
;	y=-1. assume a = .5

wt+1 = [.4, -.2] +.5 (0 – 1) x2
 = [.4, -.2] - .5 * [.4, .1]
 = [.2, -.25]

Perceptron: updating

y=1~

y=1~

y

.2

-.25

.1 =-1

Training	data

y

0
1

.1

.3
.4
.8

x2

x1

net = .4*.2 + .1*-.25 = .055

wt+1 = [.2, -.25]

Perceptron

~

Multiclass decision rule
If we have multiple classes

• A weight vector for each class:

• Score (activation) of a class y:

• Prediction highest score wins

Learning: Multiclass Perceptron
• Start with all weights = 0
• Consider training examples one by one
• Predict with current weights

• If correct, no change!
• If wrong: lower score of wrong answer, raise score of

right answer

Let’s train this multiclass Perceptron by hand.

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”
“win the election”
“win the game”

Properties of Perceptrons

• Separability: true if some parameters get the training set
perfectly correct

• Convergence: if the training is separable, perceptron will
eventually converge (binary case)

• Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Examples: Perceptron
• Non-Separable Case

Improving the Perceptron

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

Averaging weight vectors over time can
help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

Overtraining: test / held-out
accuracy usually rises, then falls

Overtraining is a kind of overfitting

Fixing the Perceptron
Idea: adjust the weight update to mitigate these effects

MIRA*: choose an update size that fixes the current mistake…
… but, minimizes the change to w

The +1 helps to generalize

* Margin Infused Relaxed Algorithm

Minimum correcting update

min not t=0, or would not
have made an error, so min will
be where equality holds

Maximum step size
In practice, it’s also bad to make updates that are too large

• Example may be labeled incorrectly
• You may not have enough features
• Solution: cap the maximum possible value of t with some constant C

• Corresponds to an optimization that assumes non-separable data
• Usually converges faster than perceptron
• Usually better, especially on noisy data

Linear separators
Which of these linear separators is optimal?

Support Vector Machines (SVMs)
• Maximizing the margin: good according to intuition, theory, practice
• Only support vectors matter; other training examples are ignorable
• Support vector machines (SVMs) find the separator with max margin
• Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM

o

x

o
o

o o o

o
o

o

x

x

x
x

x

x x x

x x x

x

support
vectors

margin o

Support Vector Machines (SVMs)

Solving the optimization problem

• Need to optimize a quadratic function subject to linear constraints.
• Fortunately: Quadratic optimization problems are a well-known class of

mathematical programming problems for which several (non-trivial)
algorithms exist.

• Can also approximate via SGD!

Find	w and	b	such	that
Φ(w) =wTw is	minimized	
and	for	all	(xi,	yi), i=1..n :							yi (wTxi +	b) ≥	1

“Soft margin” classification

• What if the training set is not linearly separable?
• Slack variables ξi can be added to allow misclassification of difficult or noisy

examples, resulting margin called soft.

ξi
ξi

• The old formulation:

• Modified formulation incorporates slack variables:

• Parameter C can be viewed as a way to control overfitting: it “trades off” the
relative importance of maximizing the margin and fitting the training data.

Find	w and	b	such	that
Φ(w) =wTw is	minimized	
and	for	all	(xi ,yi), i=1..n :							yi (wTxi +	b) ≥	1

Find	w and	b	such	that
Φ(w) =wTw +	CΣξi is	minimized	
and	for	all	(xi ,yi), i=1..n: yi (wTxi +	b) ≥	1	– ξi, ,ξi≥	0

“Soft margin” classification

Classification: comparison

Naïve Bayes (generative model)
• Builds a model training data
• Gives prediction probabilities
• Strong assumptions about feature independence
• One pass through data (counting)

Perceptrons / MIRA / SVM (discriminative models)
• Makes less assumptions about data
• Mistake-driven learning
• Multiple passes through data (prediction)
• Often more accurate

Multi-Layer perceptrons

Perceptron as a linear separator
Since perceptron uses linear threshold function, it is searching for a linear separator that
discriminates the classes.

o3

o2

??
Or hyperplane in
n-dimensional space

Cannot learn exclusive-or!

o3

o2

??+1

0
1

–

+–

Where Perceptron fails

Multi-Layer Perceptrons to the rescue!

Multi-Layer networks (“deep learning”)
• Can represent arbitrary functions

• A typical multi-layer network consists of an input, hidden and output layer, each
fully connected to the next, with activation feeding forward.

• The weights determine the function computed. Given an arbitrary number of
hidden units, any boolean function can be computed with a single hidden layer.

output

hidden

input

activation

OK, great but… how do we fit this thing?

Flashback to Approx Q-learning: Gradient Descent

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

54

Neural network model: more notation
• Model network as a graph with cells as nodes and synaptic

connections as weighted edges from node i to node j, wji

• Model net input to cell as

• Cell output is:

1

32 54 6

w12

w13 w14
w15

w16

i
i

jij ownet å=

(Tj is	threshold	for	unit	j)

ji

jj
j Tnet

Tnet
o

³
<

=
 if 1
 if 0

netj

oj

Tj
0

1

• To do gradient descent, we need the output of a unit to be a differentiable
function of its input and weights.

• Standard linear threshold function is not differentiable at the threshold.

netj

oi

Tj
0

1

Learning in multi-layer networks

Differentiable output function
Need non-linear output function to move beyond linear functions.

• A multi-layer linear network is still linear

Standard solution is to use the non-linear, differentiable sigmoidal
“logistic” function:

netjTj
0

1

)(1
1

jj Tnetj e
o --+
=

Gradient descent
Define objective to minimize error:

where D is the set of training examples, K is the set of output units, tkd and okd
are, respectively, the label and current output for unit k for example d.

The derivative of a sigmoid unit with respect to net input is:

Learning rule to change weights to minimize error is:

2)()(kd
Dd Kk

kd otWE -=åå
Î Î

)1(jj
j

j oo
net
o

-=
¶

¶

ji
ji w

Ew
¶
¶

-=D h

Backpropagation learning rule
Each weight changed by:

where η is a constant called the learning rate
tj is the correct teacher output for unit j
δj is the error measure for unit j

ijji ow hd=D

unitoutput an is if))(1(jotoo jjjjj --=d
unithidden a is if)1(jwoo

k
kjkjjj å-= dd

Backpropagation in action
First calculate error of output units and use this to change the top layer of weights.

output

hidden

input

Current output: oj=0.2
Correct output: tj=1.0
Error δj = oj(1–oj)(tj–oj)
0.2(1–0.2)(1–0.2)=0.128

Update weights into j

ijji ow hd=D

Next calculate error for hidden units based on errors on the output units it feeds into.

output

hidden

input

å-=
k

kjkjjj woo dd)1(

Backpropagation in action

61

Finally update bottom layer of weights based on errors calculated for hidden units.

output

hidden

input

å-=
k

kjkjjj woo dd)1(

Update	weights	into	j

ijji ow hd=D

Backpropagation in action

Hidden unit representations

• Trained hidden units can be seen as newly constructed features that make the
target concept linearly separable in the transformed space

• Hidden units can often be interpreted as representing meaningful features such as
vowel detectors or edge detectors, etc

• The hidden layer can also become a distributed representation of the input in which
each individual unit is not easily interpretable as a meaningful feature

Over-training prevention
Running too many epochs can result in over-fitting.

Keep a hold-out validation set and test accuracy on it after every epoch. Stop
training when additional epochs actually increase validation error.
To avoid losing training data for validation:

• Use internal 10-fold CV on the training set to compute the average number of
epochs that maximizes generalization accuracy.

• Train final network on complete training set for this many epochs.

er
ro
r

on	training	data

on	test	data

0 #	training	epochs

That’s it for today!

• Next week: more machine learning!
• Reminders:
• Homework 4 due Friday!
• Project proposals due next Tuesday (4/4)!!!

