CS 4100 // artificial intelligence

INstructor: byron wallace

Bayes Nets |I:
Estimation and Inference

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials

Thanks to John DeNero and Dan Klein

Bayes’ net representation

A directed, acyclic graph, one node per random variable

A conditional probability table (CPT) for each node

» A collection of distributions over X, one for each
combination of parents’ P(X|a1 ... an)

Bayes’ nets implicitly encode joint distributions
« As a product of local conditional distributions

» Jo see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
1=1

—xample: alarm network

p N g
3 | PE E | PE we
b | 0.001 Burglary Earthok! +e | 0.002
b |0.999 AN e - |0.998
Alarm
L — B | E | A | PABE
John Mary +b | +e | +a 0.95
calls calls th|+e| - 0.0
+b | -e | +a 0.94
Al J | PUA Al M | PMA) +b | -e | -a 0.06
+a | 4 0.9 +a | +m 0.7 -b | +e | +a 0.29
+a | - 0.1 +a | -m 0.3 ‘b | +e | -a 0.71
-a |+ 0.05 -a | +m | 0.07 ‘b | -e | +a 0.007
-a | - 0.95 -a | -m 0.99 b | -e | -a 0.999

—xample: alarm network

) Nu—
B | PB) E | PE we[=
b 10.001 Burglary Earthgk! +e | 0.002
b |0.999 \ _ -6 0.998
Alarm
Al J | PUA AL M | PIMA 51t Al PABE
+ta | + | 009 — T +a | +m | 0.7 ’
. +o | +e | +a 0.95
B D o ey om0 b | +e | -a 0.05
+ + - .
al| 4| 005 calls calls a | +m | 001
+b | -e | +a 0.94
-a | - 0.95 -a | -m 0.99
+b | -e | -a 0.06

+e | +a 0.29

P(+b, —e,4+a,—j,+m) =

+e | -a O.71

P(+b)P(—e)P(+4a| + b, —e)P(—j| + a)P(+m|+ a) = e |+a| 000

olo|o|o

-e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7

Inference In Bayes' nets

* Inference: calculating some Example: Posterior probability
useful guantity from a joint

orobability distribution P(QIE1 =e1,... B, = ey)

Nalve approach: inference by enumeration

General case:
« Evidence variables: £1 - --
« Query* variable: Q
* Hidden variables: Hq..

Step 1: Select the
entries consistent with
the evidence

P
0.05

0.25

oo |

0.2

0.01 a-——_-a
T
P(Q,e1...e;) = > P(@yhl---hrael---ek)

Ekzel...ek X]_)XQ)X’I’L

All variables

. Hy

Step 2: Sum out H to get joint of
Query and evidence

_/

hi...hy ~
X1, Xo,...Xp,

We want;

*Works fine with
multiple query
variables, too

P(Qley . ..ex)

Step 3: Normalize

1
><_
A

Z:ZP(Qael”'ek)
q

1

P(Qler---ex) = ZP(Q,e1---ek)

7

Inference by enumeration in Bayes' Net

Given unlimited time, inference in BNs is easy e e
Reminder of inference by enumeration by exampile:
P(B | +j,+m) xg P(B,+j,+m) @

= Z P(B,e,a,+j,+m)

= PBYP()P(o|B,) P(+ila)P(+mlo)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B, —e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e) P(+j| — a)P(+m| — a)

Inference by enumeration”?

P(Antilock|observed variables) = 7

Inference by enumeration vs. variable elimination

Why is inference by enumeration so slow? |dea: interleave joining and marginalizing!

* You join up the whole joint distribution before
you sum out the hidden variables

e Called “Variable Elimination”

 Still NP-hard, but usually much faster than
inference by enumeration

* First we’ll need some new notation: factors

—actors

Burglary 1;(031)

P(E)
Earthquake 000
P(A)
95
94
29
001
P(M)
01

—actors

P(—alb,e) P(alb,—e)
05 94

P(—alb,—e)

P(jla) P(jl=a) P(jla) P(jl—a)
90 05 90 05

O O O O
P(mla) P(ml—-a) P(mla) P(ml=-a)
.70 01 .10

O 01 O

—actors

P(alb,e) ‘F P(-albe) Plalb,~e) JB L P(=alb,—e)
95 05 94
P(jla) 2@ P(jl=a)
90 05 90 05
O <> O O
P(mla) P(ml—-a) P(mla) P(ml=-a)

70 O 01 ® 0 O 01 O

—actors

P(E)

Burglary

Earthquake

002

B E | P&
ot 95
tf 94
St 29
fof 001

A | PWJ) A |P(M)
J 105 f |01

P(B|j,m)=aP(B ZP ZPa\Be j|a) (m|a)

2/ \§

fl(B) fg(E) © L(ABE) fi(A) f5(A)

—aCctors

P(E)
002

Burglary

Earthquake

B E | PA
rt 95
tf | 94
oot 29
ff | ool

ALPD A [Pon)
t .90 10
f 105 7o
P(B|j,m) = a P(B ZP)>_P(a| B.c) P(j|a) Pm |a)

| Hid = (Jf<§'j| ‘:15) - (832)

fl(B) fg(E) EB(AB.E) fa(A) fs5(A)

—actor z0o

Z B

55 Wy

—actor zoo 1

P(T,W)

Joint distribution: P(X,Y) . " >

« Entries P(x,y) for all x, y

e Sums to 1 hot sun 0.4
hot rain 0.1

cold sun 0.2

cold rain 0.3

Selected joint: P(x,Y)
« A slice of the joint distribution
» Entries P(x,y) for fixed x, all y P(cold, W)
« Sums to P(x)

T W P

. cold sun | 0.2

Number of capitals = 4 | ran 103
dimensionality of the table '

—actor zoo 2

Single conditional: P(Y | x) P(W|cold)
« Entries P(y | x) for fixed x, all y
« Sums to 1 T W P
cold sun | 0.4
cold rain | 0.6
Family of conditionals: P(W|T)
T W P

PXY)

* Multiple conditionals hot sun | 0.8
* Entries P(x | y) for all x, y hot | rain | 02 || P(W |hot)
* Sums to [Y] cold sun | 0.4 ’

cold rain | 0.6 || P(W|COld)

—actor zoo 3

Specified family: P(y | X)
« Entries P(y | x) for fixed y, but for all x
 Sums to ... who knows!

P(rain|T')

T W P
hot rain | 0.2 J: P('Pain|hot)

cold rain 0.6

P(rain|cold)

Factor zoo summary

In general, when we write P(Y; ... Yy | X; ... Xy)
e |tis a “factor,” a multi-dimensional array

« lts values are P(y; ... yn | X1 -+ Xy)

« Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Random Variables

—xample: traffic domain

* R: Raining
 T: Traffic

o |: Late for class!

P(R)

+r

0.1

0.9

P(T|R)

+r

0.8

+r

0.2

0.1

0.9

P(L|T)

+t

+l

0.3

+t

0.7

+|

0.1

0.9

Inference by enumeration: procedural outline

Track objects called factors
Initial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -| 0.7

-r +t | 0.1 -t + 0.1
-r -t | 09 -t -l 0.9

Any known values are selected
E.g. if we know L =4/ , the initial factors are

P(R) P(T|R) P(+4T)
+r 0.1 +r | +t | 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1

-r + [0.1
-r t | 09

Procedure: Join all factors, then eliminate all hidden variables

Operation 1: join factors

First basic operation: joining factors

Combining factors:
- Like a database join }% —
» Get all factors over the joining variable

* Build a new factor over the union of the variables
involved

Example: Join on R
@ P(R) X P(T|R) m==» P(R,T)
+r 0.1 +r | +t |0.8 +r | +t | 0.08
-r 0.9 +r | -t 10.2 +r | -t | 0.02
G or | +t]0.1 or | +t | 0.09
-r | -t |0.9 -r | -t | 0.81

- Computation for each entry: pointwise products Vr, ¢t ;. P(r,t) = P(r) - P(t|r)

B | o =>
—xample: multiple joins f. .
N -

e +r | 0.1 P(R T)
-r 0.9 . ’ :
Join R Join T
+r | +t | 0.08
P(T|R) ‘ +r | -t | 0.02 ‘
@ +r | +t |0.8 -r | +t10.09
+r| -t 0.2 -r -t 0.81 R’ T P(R,T, L)
-r | +t |0.1 +r | +t | + | 0.024
0 T tlog i sr | +t | - |0.056
- I 0.002
P(L|T P(L|T ot
(L|T) (L|T) ir | €t | 1 | 0018
+t | +| {0.3 +t | +| {0.3 -r +t + | 0.027
+t | -1 [0.7 +t | -1 [{0.7 -r +t -1 0.063
-t | +l |0.1 -t | +| [0.1 -r -t + | 0.081
-t | -1 0.9 -t | -1 10.9 -r -t -1 0.729

Operation 2: eliminate

Second basic operation: marginalization

Take a factor and sum out a variable
* Shrinks a factor to a smaller one

A projection operation

Example:
P(R,T)

P(T
+r | +t | 0.08 sum R ()
+r | -t | 0.02 ‘ +t
-r | +t | 0.09 -t
-r | -t | 0.81

Multiple elimination

P(R,T,L)

+r

+t

+l

0.024

+r

+t

0.056

+r

-t

+l

0.002

+r

-t

0.018

+t

+l

0.027

+t

0.063

-t

+l

0.081

1 1 1 1
- - - -

-t

0.729

Sum
out R

>

P(T, L)

0.051

0.119

0.083

0.747

P(L) = 7

Sum
out T

®

P(L)

+ | 0.134

-l 10.886

Thus far: multiple join, multiple eliminate (= inference by
enumeration)

[-

Marginalizing early (= variable elimination)

Traffic domain

(R) P(L) =7

@ Inference by Enumeration Variable Elimination

=" P(LI P P(H) =Y P(L|t) Y P(r)P(|r)
0 t r ‘—'—’ t T \ Y J
Joinonr Joinonr
L Y J \ Y)
Joinont Eliminate r
Y 4 L Y J
Eliminate r Joinont
Y J [| Y J

Eliminate t Eliminate t

Marginalizing early! (aka V

Join R

P(R)
+r | 0.1
-r | 0.9
e P(T|R)
+r | +t |0.8
+r| -t |0.2
e -r | +t |0.1
-r | -t 10.9
P(L|T)
G +t | +1 |0.3
+t | -l (0.7
-t | +| [0.1
-t | -11]0.9

—>

)

P(R,T) SumoutR

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

R T

®

P(L|T)

+t

+l

0.3

+t

0.7

+l

0.1

0.9

—>

P(T)

+t | 0.17

-t | 0.83

P(L|T)

+t | +1 |0.3

+t | -l (0.7

Join T

Sumout T

>

>

P(T, L)
+t | +| | 0.051
+t| -l | 0.119
-t | +| | 0.083
-t | -l | 0.747

®

P(L)

+]

0.134

0.866

-vidence

If evidence, start with factors that select that evidence
* No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -| 0.7
-r +t [0.1 -t + 0.1
-r -t | 0.9 -t -1 0.9

* With evidence, +r, the initial factors become:

P(+r) P(T|+r) P(LIT)

. +t +| 0.3

+r -t | 0.2 +t -l 0.7
-t +| 0.1

-t | 0.9

We eliminate all vars other than query + evidence

-vidence

Result will be a selected joint of query and evidence
« E.g. for P(L | +r), we would end up with:

P(‘|‘T‘, L) Normalize P(L ‘|"'“)

+r | +l | 0.026 — + | 0.26
-1 | 0.074 -1 1 0.74

+r

To get our answer, just normalize this!

That s it!

(General variable elimination

Query: P(Q|F1 =eq,... Ep, = ep)

Start with initial factors:
« Local CPTs (but instantiated by evidence)

While there are still hidden variables (not Q or
evidence):

» Pick a hidden variable H

 Join all factors mentioning H

 Eliminate (sum out) H

Join all remaining factors and normalize 1

(General variable elimination

Query: P(Q|F1 =eq,... Ep, = ep)

Start with initial factors:
« Local CPTs (but instantiated by evidence)

While there are still hidden variables (not Q or
evidence):

* Pick a hidden variable H

 Join all factors mentioning H

 Eliminate (sum out) H

Join all remaining factors and normalize 1

—xample (on board first)
P(B|j,m) o< P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA) P(m|A)

—Xample

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B, E) P(lA) P(m|A)
Choose A
P(A|B,E)
P(j|A) X) P(,m,AlB,E) &) P(j,m|B,E)
P(m|A) >

P(B)

P(E) P(j,m|B, E)

—xample

P(B) P(E) P(j,m|B, E) O (&

Next choose E 0

P(E) » P(j,m, E|B) - P(j,m|B) (@ ()
P(j,m|B, E)

P(B) P(j,m|B)

Finish with B

P(B) | .
oo W) PGmp) WS P(Blm)

Same example in equations

P(B|j,m) o« P(B,j,m) O o O

P(B) P(E) P(A|B, E) P(jlA) P(m|A)

P(B|j,m) o P(B,j,m)

= Y P(B,j,m,e a) marginal can be obtained from joint by summing out
— Z P(B)P(e)P(a|B,e)P(jla)P(m|a) use Bayes’ net joint distribution expression

= Y P(B)P(e) Y P(a|B,e) P(jla) P(m|a) use X*(y+z) = Xy + Xz (to sum out over al)
= > P(B)P(e)f1(B,e, j,m) joining on a, and then summing out gives f,
= P(B)) P(e)fi(B,e, j,m) use X*(y+z) = Xy + xz

e
= P(B)f2(B,j,m) joining on e, and then summing out gives f,

Another variable elimination example

Query: P(X3|Y1 =y1,Ye = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
p(Z2)p(X1|Z)p(X2| Z)p(X3| Z)p(y1 | X1)p(y2| X2)p(ys| X3)

Eliminate X, this introduces the factor fi(Z,y1) = >, p(x1|Z2)p(y1]|z1), and
we are left with:

p(Z) f1(Z,y1)p(X2| Z)p(X3]|Z)p(y2| X2)p(y3| X3)

Eliminate Xo, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|r2), and
we are left with:

P(2) f1(Z,y1) f2(Z,y2)p(X3]| Z)p(y3| X3)

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2, 1) f2(2, y2)p(X3|2),
and we are left:

p(y3|X3)7 f3(yla Y2, XS)

No hidden variables left. Join the remaining factors to get:

fa(y1, 92,3, X3) = P(y3|X3) f3(y1, y2, X3).

Normalizing over X3 gives P(X3|y1,y2,y3).

Computational complexity critically
depends on the largest factor being
generated in this process. Size of
factor = number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X, respectively).

Variable elimination ordering

« For the query P(X.|ys,...,Y,) work through the following two different orderings as done in previous
slide: Z, X4, ..., X,y and >C .., X1, Z. What is the size of the maximum factor generated for each
of the orderings”

Z

Xl X2 Xn— 1 Xn
Yi Yo) Y1 (Yn

« Answer: 2"71 versus 22 (assuming binary)

* In general: the ordering can greatly affect efficiency.

—: computational and space complexity

The computational and space complexity of variable elimination is
determined by the largest factor

The elimination ordering can greatly affect the size of the largest factor.
* E.g., previous slide’s example 2" vs. 2

Does there always exist an ordering that only results in small factors?
* No!

Bayes nets: so far

» Last time: representation and semantics

» Thus far today: inference. Remaining: approximate inference (and learning) via
sampling.

g 2

Sampling

Sampling is a lot like repeated simulation Why sample”?

* Learning: get samples from a

* Predicting the weather, basketball games, ... Sarming
distribution you don’t know

. Inference: getting a sample is faster
Basic idea than computing the right answer (e.g.

with variable elimination)

« Draw N samples from a sampling distribution S
« Compute an approximate posterior probability

» Show this converges to the true probability P

Sampling

Sampling from given distribution

« Step 1: Get sample u from uniform
distribution over [0, 1)
« E.g. random() in python

« Step 2: Convert this sample u into an
outcome for the given distribution by
having each outcome associated
with a sub-interval of [0,1) with sub-
interval size equal to probability of
the outcome

Example
C P(C)
red 0.6
green 0.1
blue 0.3

0<u<0.6,—C =red
0.6 <u<0.7, = C = green
0.7<u<1,— C = blue

 If random() returns u = 0.83, then our sample
is C = blue
« E.g, after sampling 8 times:

T o

Sampling in Bayes' nets

* Prior Sampling
* Rejection Sampling
* Likelihood Weighting

 Gibbs Sampling

Prior sampling

Prior sampling

P(C)
+C 0.5
-C 0.5

P(S|C)
+c | +s [0.1
-s [0.9
-c | +s | 0.5
-s [0.5
P(W|S, R)

+5 +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

Samples:

+C, -S, +1, +W

-C, +S, I, +W

Prior sampling

Fori=1,2&,...,n

Return (x,, X, ..

Sample x; from P(X, | Parents(X)))

. Xp)

Prior sampling

This process generates samples with probability:

Sps(zy...xn) = |[P(x;|Parents(X;)) = P(z1...zn)
i=1
...i.e. the BN’ s joint probability

Let the number of samples of an event be Npg(xq...xn)

Then Jim P(zy,...,2n) im Nps(z1,...,2n)/N

N—oo N—oo
SPS(xla <. ,ZEn)
= P(xq1...z0)

l.e., the sampling procedure is consistent

—xample

We'll get a bunch of samples from the BN:
+C, -S, +I, +W
+C, +S, +I, +W
-C, +S, +I, -W
+C, -S, +I, +W
-C, -S, -, +W

If we want to know P(W)
* We have counts <+w:4, -w:1>
Normalize to get P(W) = <+w:0.8, -w:0.2>
This will get closer to the true distribution with more samples
Can estimate anything else, too
What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
Fast: can use fewer samples if less time (what’s the drawback?)

Rejection sampling

N
i)

Rejection sampling

Let’s say we want P(C)
» No point keeping all samples around
 Just tally counts of C as we go

Let’s say we want P(C| +s)

« Same thing: tally C outcomes, but ignore (reject) samples which
don’t have S=+s

* This is called rejection sampling

* |tis also consistent for conditional probabilities (i.e., correct in the
limit)

+C, -S, +1, +W
+C, +S, +1, +W
-C, +5, +I, -W
+C, -S, +1, +W
-C, =S, I, +W

Rejection sampling

IN: evidence instantiation
Fori=1,2,...,n

Sample x; from P(X; | Parents(X)))

If x; not consistent with evidence

Reject: Return, and no sample is generated in this
cycle

Return (x,, X, ..., X,)

ikelihood weighting

ikelihood weighting

Problem with rejection sampling:

Idea: fix evidence variables and sample the rest
« If evidence is unlikely, rejects lots of samples » Problem: sample distribution not consistent!
» Evidence not exploited as you sample = Solution: weight by probability of evidence given
« Consider P(Shape|blue) parents
pyramid,—green pyramid, blue
pyramic;—red

pyramid, blue
sphere, blue
cube, blue

sphere, blue

sphere, blue

ikelihood weighting

PC)
+C 0.5
-C 0.5

P(S|C)
+c | +s | 0.1
-s 0.9
-c | +s [0.5
-s 0.5

P(W|S, R)

+s +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-S +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)

+c | +r 1 0.8

Samples:

+C, +S, +1, +W

w = 1.0x0.1x0.99

ikelihood weighting

IN: evidence instantiation
w=1.0

fori=1,2, ...,n
if X, is an evidence variable
X, = observation x; for X;
Set w=w * P(x, | Parents(X)))
else

Sample x; from P(X, |
Parents(X,))

return (x,, X,, ..., X), W

ikelihood weighting

Sampling distribution if z sampled and e fixed evidence

l
Sws(z,e) = || P(z]|Parents(Z;)) <«

=1
Now, samples have weights 'o
m

w(z,e) = || P(e;|Parents(E;))
i=1

Together, weighted sampling distribution is consistent

[m
Sws(z,€) - w(z,€) = | | P(zi|Parents(z;)) | | P(e;|Parents(e;))
1=1 =1

= P(z,e)

ikelihood weighting

Likelihood weighting is good
* \We have taken evidence into account as we
generate the sample

* E.g. here, W’s value will get picked based on
the evidence values of S, R

* More of our samples will reflect the state of the
world suggested by the evidence

Likelihood weighting doesn’t solve all our
problems

» Evidence influences the choice of downstream
variables, but not upstream ones (C isn’t more
likely to get a value matching the evidence)

We would like to consider evidence when we
sample every variable

- Gibbs sampling

Giblbs sampling

Giblbs sampling

* Procedure: keep track of a full instantiation x4, X, ..., X,. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

Giblbs sampling

* Procedure: keep track of a full instantiation x4, X, ..., X,. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

* Property: in the limit of repeating this infinitely many times the resulting sample is coming from
the correct distribution

Giblbs sampling

* Procedure: keep track of a full instantiation x4, X, ..., X,. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

* Property: in the limit of repeating this infinitely many times the resulting sample is coming from
the correct distribution

» Rationale: both upstream and downstream variables condition on evidence.

Giblbs sampling

* Procedure: keep track of a full instantiation x4, X, ..., X,. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

* Property: in the limit of repeating this infinitely many times the resulting sample is coming from
the correct distribution

» Rationale: both upstream and downstream variables condition on evidence.

* In contrast: likelihood weighting only conditions on upstream evidence, and hence weights
obtained in likelihood weighting can sometimes be very small. Sum of weights over all samples
IS indicative of how many “effective” samples were obtained, so want high weight.

Gibbs sampling example: P(S | +1)

Step 1: Fix evidence
R=+r

Step 2: Initialize other variables
Randomly

Steps 3: Repeat
Choose a non-evidence variable X
Resample X from P(X | all other variables)

Sample from P(S|+ ¢, —w,+r) Sample from P(C|+ s, —w, +1) Sample from P(W|+ s, +c, +r)

—fficient resampling of one variaple

Sample from P(S | +c, +r, -w)
P(S,+c,+r, —w)
P(+c, +r, —w)

_ P(S,+c,+r, —w)

N > P(s,+c,+r, —w)

_ P(+c)P(S|+c)P(+r|+ c) P(—wl|S, +7)

>, P(+¢)P(s| + ¢)P(+7r| + ¢) P(—wls, +T)

P(+c)P(S|+ ¢)P(+r| + ¢)P(—w|S, +r)

P(+c)P(+r|+c) 3o P(s| + ¢)P(—wls, +)

_ P(S|+c)P(—w|S,+r)

- Y, P(s| + ¢)P(—wl|s, +T1)

P(S|+c¢,+r,—w) =

Many things cancel out — only CPTs with S remain!

More generally: only CPTs that have resampled variable need to be considered, and
joined together

Bayes’ net sampling summary

Prior Sampling P Rejection Sampling P(Q | e)

OK, that's all for today!

* Up next: supervised machine learning!

