
Bayes Nets II:
Estimation and Inference

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Bayes’ net representation
A directed, acyclic graph, one node per random variable

A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each
combination of parents’ values

Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

Example: alarm network

Burglary Earthqk!

Alarm

John
calls

Mary
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

Example: alarm network

Burglary Earthqk!

Alarm

John
calls

Mary
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

Example: Posterior probability

Inference in Bayes’ nets

• Inference: calculating some
useful quantity from a joint
probability distribution

Naïve approach: inference by enumeration
General case:

• Evidence variables:
• Query* variable:
• Hidden variables: All	variables

* Works fine with
multiple query
variables, too

We want:

Step 1: Select the
entries consistent with
the evidence

Step 2: Sum out H to get joint of
Query and evidence

Step 3: Normalize

⇥ 1

Z

Inference by enumeration in Bayes’ Net
Given unlimited time, inference in BNs is easy

Reminder of inference by enumeration by example:
B E

A

MJ

P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)

Inference by enumeration?

P (Antilock|observed variables) = ?

Inference by enumeration vs. variable elimination
Why is inference by enumeration so slow?

• You join up the whole joint distribution before
you sum out the hidden variables

Idea: interleave joining and marginalizing!
• Called “Variable Elimination”
• Still NP-hard, but usually much faster than

inference by enumeration

• First we’ll need some new notation: factors

Factors512 Chapter 14. Probabilistic Reasoning

.001

P(B)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

t

f

.90

.05

B

t

t

f

f

E

t

f

t

f

P(A)

.95

.29

.001

.94

.002

P(E)

A P(M)

t

f

.70

.01

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J , and M stand for Burglary ,
Earthquake , Alarm, JohnCalls , and MaryCalls , respectively.

the alarm and calls then, too. Mary, on the other hand, likes rather loud music and often
misses the alarm altogether. Given the evidence of who has or has not called, we would like
to estimate the probability of a burglary.

A Bayesian network for this domain appears in Figure 14.2. The network structure
shows that burglary and earthquakes directly affect the probability of the alarm’s going off,
but whether John and Mary call depends only on the alarm. The network thus represents
our assumptions that they do not perceive burglaries directly, they do not notice minor earth-
quakes, and they do not confer before calling.

The conditional distributions in Figure 14.2 are shown as a conditional probability
table, or CPT. (This form of table can be used for discrete variables; other representations,CONDITIONAL

PROBABILITY TABLE

including those suitable for continuous variables, are described in Section 14.2.) Each row
in a CPT contains the conditional probability of each node value for a conditioning case.CONDITIONING CASE

A conditioning case is just a possible combination of values for the parent nodes—a minia-
ture possible world, if you like. Each row must sum to 1, because the entries represent an
exhaustive set of cases for the variable. For Boolean variables, once you know that the prob-
ability of a true value is p, the probability of false must be 1 – p, so we often omit the second
number, as in Figure 14.2. In general, a table for a Boolean variable with k Boolean parents
contains 2k independently specifiable probabilities. A node with no parents has only one row,
representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary’s currently listening
to loud music or to the telephone ringing and confusing John. These factors are summarized
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls . This
shows both laziness and ignorance in operation: it would be a lot of work to find out why those
factors would be more or less likely in any particular case, and we have no reasonable way to
obtain the relevant information anyway. The probabilities actually summarize a potentially

Section 14.4. Exact Inference in Bayesian Networks 525

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a) P(j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

Figure 14.8 The structure of the expression shown in Equation (14.4). The evaluation
proceeds top down, multiplying values along each path and summing at the “+” nodes. Notice
the repetition of the paths for j and m.

function ENUMERATION-ASK(X , e, bn) returns a distribution over X
inputs: X , the query variable

e, observed values for variables E
bn , a Bayes net with variables {X} ∪ E ∪ Y /* Y = hidden variables */

Q(X)← a distribution over X , initially empty
for each value xi of X do

Q(xi)← ENUMERATE-ALL(bn .VARS, exi
)

where exi
is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars , e) returns a real number
if EMPTY?(vars) then return 1.0
Y ← FIRST(vars)
if Y has value y in e

then return P (y | parents(Y)) × ENUMERATE-ALL(REST(vars), e)
else return

∑
y P (y | parents(Y)) × ENUMERATE-ALL(REST(vars), ey)

where ey is e extended with Y = y

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.

Factors

Section 14.4. Exact Inference in Bayesian Networks 525

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a) P(j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

Figure 14.8 The structure of the expression shown in Equation (14.4). The evaluation
proceeds top down, multiplying values along each path and summing at the “+” nodes. Notice
the repetition of the paths for j and m.

function ENUMERATION-ASK(X , e, bn) returns a distribution over X
inputs: X , the query variable

e, observed values for variables E
bn , a Bayes net with variables {X} ∪ E ∪ Y /* Y = hidden variables */

Q(X)← a distribution over X , initially empty
for each value xi of X do

Q(xi)← ENUMERATE-ALL(bn .VARS, exi
)

where exi
is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars , e) returns a real number
if EMPTY?(vars) then return 1.0
Y ← FIRST(vars)
if Y has value y in e

then return P (y | parents(Y)) × ENUMERATE-ALL(REST(vars), e)
else return

∑
y P (y | parents(Y)) × ENUMERATE-ALL(REST(vars), ey)

where ey is e extended with Y = y

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.

Factors

Factors

524 Chapter 14. Probabilistic Reasoning

values. The structure of this computation is shown in Figure 14.8. Using the numbers from
Figure 14.2, we obtain P (b | j,m) = α× 0.00059224. The corresponding computation for
¬b yields α× 0.0014919; hence,

P(B | j,m) = α ⟨0.00059224, 0.0014919⟩ ≈ ⟨0.284, 0.716⟩ .

That is, the chance of a burglary, given calls from both neighbors, is about 28%.
The evaluation process for the expression in Equation (14.4) is shown as an expression

tree in Figure 14.8. The ENUMERATION-ASK algorithm in Figure 14.9 evaluates such trees
using depth-first recursion. The algorithm is very similar in structure to the backtracking al-
gorithm for solving CSPs (Figure 6.5) and the DPLL algorithm for satisfiability (Figure 7.17).

The space complexity of ENUMERATION-ASK is only linear in the number of variables:
the algorithm sums over the full joint distribution without ever constructing it explicitly. Un-
fortunately, its time complexity for a network with n Boolean variables is always O(2n)—
better than the O(n 2n) for the simple approach described earlier, but still rather grim.

Note that the tree in Figure 14.8 makes explicit the repeated subexpressions evalu-
ated by the algorithm. The products P (j | a)P (m | a) and P (j | ¬a)P (m | ¬a) are computed
twice, once for each value of e. The next section describes a general method that avoids such
wasted computations.

14.4.2 The variable elimination algorithm

The enumeration algorithm can be improved substantially by eliminating repeated calcula-
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and
save the results for later use. This is a form of dynamic programming. There are several ver-
sions of this approach; we present the variable elimination algorithm, which is the simplest.VARIABLE

ELIMINATION

Variable elimination works by evaluating expressions such as Equation (14.4) in right-to-left
order (that is, bottom up in Figure 14.8). Intermediate results are stored, and summations over
each variable are done only for those portions of the expression that depend on the variable.

Let us illustrate this process for the burglary network. We evaluate the expression

P(B | j,m) = α P(B)
︸ ︷︷ ︸
f1(B)

∑

e

P (e)
︸︷︷︸
f2(E)

∑

a

P(a |B, e)
︸ ︷︷ ︸

f3(A,B,E)

P (j | a)
︸ ︷︷ ︸

f4(A)

P (m | a)
︸ ︷︷ ︸

f5(A)

.

Notice that we have annotated each part of the expression with the name of the corresponding
factor; each factor is a matrix indexed by the values of its argument variables. For example,FACTOR

the factors f4(A) and f5(A) corresponding to P (j | a) and P (m | a) depend just on A because
J and M are fixed by the query. They are therefore two-element vectors:

f4(A) =

(
P (j | a)

P (j | ¬a)

)

=

(
0.90

0.05

)

f5(A) =

(
P (m | a)

P (m | ¬a)

)

=

(
0.70

0.01

)

.

f3(A,B,E) will be a 2× 2× 2 matrix, which is hard to show on the printed page. (The “first”
element is given by P (a | b, e)= 0.95 and the “last” by P (¬a | ¬b,¬e)= 0.999.) In terms of
factors, the query expression is written as

P(B | j,m) = α f1(B)×
∑

e

f2(E)×
∑

a

f3(A,B,E)× f4(A)× f5(A)

512 Chapter 14. Probabilistic Reasoning

.001

P(B)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

t

f

.90

.05

B

t

t

f

f

E

t

f

t

f

P(A)

.95

.29

.001

.94

.002

P(E)

A P(M)

t

f

.70

.01

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J , and M stand for Burglary ,
Earthquake , Alarm, JohnCalls , and MaryCalls , respectively.

the alarm and calls then, too. Mary, on the other hand, likes rather loud music and often
misses the alarm altogether. Given the evidence of who has or has not called, we would like
to estimate the probability of a burglary.

A Bayesian network for this domain appears in Figure 14.2. The network structure
shows that burglary and earthquakes directly affect the probability of the alarm’s going off,
but whether John and Mary call depends only on the alarm. The network thus represents
our assumptions that they do not perceive burglaries directly, they do not notice minor earth-
quakes, and they do not confer before calling.

The conditional distributions in Figure 14.2 are shown as a conditional probability
table, or CPT. (This form of table can be used for discrete variables; other representations,CONDITIONAL

PROBABILITY TABLE

including those suitable for continuous variables, are described in Section 14.2.) Each row
in a CPT contains the conditional probability of each node value for a conditioning case.CONDITIONING CASE

A conditioning case is just a possible combination of values for the parent nodes—a minia-
ture possible world, if you like. Each row must sum to 1, because the entries represent an
exhaustive set of cases for the variable. For Boolean variables, once you know that the prob-
ability of a true value is p, the probability of false must be 1 – p, so we often omit the second
number, as in Figure 14.2. In general, a table for a Boolean variable with k Boolean parents
contains 2k independently specifiable probabilities. A node with no parents has only one row,
representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary’s currently listening
to loud music or to the telephone ringing and confusing John. These factors are summarized
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls . This
shows both laziness and ignorance in operation: it would be a lot of work to find out why those
factors would be more or less likely in any particular case, and we have no reasonable way to
obtain the relevant information anyway. The probabilities actually summarize a potentially

Factors

524 Chapter 14. Probabilistic Reasoning

values. The structure of this computation is shown in Figure 14.8. Using the numbers from
Figure 14.2, we obtain P (b | j,m) = α× 0.00059224. The corresponding computation for
¬b yields α× 0.0014919; hence,

P(B | j,m) = α ⟨0.00059224, 0.0014919⟩ ≈ ⟨0.284, 0.716⟩ .

That is, the chance of a burglary, given calls from both neighbors, is about 28%.
The evaluation process for the expression in Equation (14.4) is shown as an expression

tree in Figure 14.8. The ENUMERATION-ASK algorithm in Figure 14.9 evaluates such trees
using depth-first recursion. The algorithm is very similar in structure to the backtracking al-
gorithm for solving CSPs (Figure 6.5) and the DPLL algorithm for satisfiability (Figure 7.17).

The space complexity of ENUMERATION-ASK is only linear in the number of variables:
the algorithm sums over the full joint distribution without ever constructing it explicitly. Un-
fortunately, its time complexity for a network with n Boolean variables is always O(2n)—
better than the O(n 2n) for the simple approach described earlier, but still rather grim.

Note that the tree in Figure 14.8 makes explicit the repeated subexpressions evalu-
ated by the algorithm. The products P (j | a)P (m | a) and P (j | ¬a)P (m | ¬a) are computed
twice, once for each value of e. The next section describes a general method that avoids such
wasted computations.

14.4.2 The variable elimination algorithm

The enumeration algorithm can be improved substantially by eliminating repeated calcula-
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and
save the results for later use. This is a form of dynamic programming. There are several ver-
sions of this approach; we present the variable elimination algorithm, which is the simplest.VARIABLE

ELIMINATION

Variable elimination works by evaluating expressions such as Equation (14.4) in right-to-left
order (that is, bottom up in Figure 14.8). Intermediate results are stored, and summations over
each variable are done only for those portions of the expression that depend on the variable.

Let us illustrate this process for the burglary network. We evaluate the expression

P(B | j,m) = α P(B)
︸ ︷︷ ︸
f1(B)

∑

e

P (e)
︸︷︷︸
f2(E)

∑

a

P(a |B, e)
︸ ︷︷ ︸

f3(A,B,E)

P (j | a)
︸ ︷︷ ︸

f4(A)

P (m | a)
︸ ︷︷ ︸

f5(A)

.

Notice that we have annotated each part of the expression with the name of the corresponding
factor; each factor is a matrix indexed by the values of its argument variables. For example,FACTOR

the factors f4(A) and f5(A) corresponding to P (j | a) and P (m | a) depend just on A because
J and M are fixed by the query. They are therefore two-element vectors:

f4(A) =

(
P (j | a)

P (j | ¬a)

)

=

(
0.90

0.05

)

f5(A) =

(
P (m | a)

P (m | ¬a)

)

=

(
0.70

0.01

)

.

f3(A,B,E) will be a 2× 2× 2 matrix, which is hard to show on the printed page. (The “first”
element is given by P (a | b, e)= 0.95 and the “last” by P (¬a | ¬b,¬e)= 0.999.) In terms of
factors, the query expression is written as

P(B | j,m) = α f1(B)×
∑

e

f2(E)×
∑

a

f3(A,B,E)× f4(A)× f5(A)

512 Chapter 14. Probabilistic Reasoning

.001

P(B)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

t

f

.90

.05

B

t

t

f

f

E

t

f

t

f

P(A)

.95

.29

.001

.94

.002

P(E)

A P(M)

t

f

.70

.01

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J , and M stand for Burglary ,
Earthquake , Alarm, JohnCalls , and MaryCalls , respectively.

the alarm and calls then, too. Mary, on the other hand, likes rather loud music and often
misses the alarm altogether. Given the evidence of who has or has not called, we would like
to estimate the probability of a burglary.

A Bayesian network for this domain appears in Figure 14.2. The network structure
shows that burglary and earthquakes directly affect the probability of the alarm’s going off,
but whether John and Mary call depends only on the alarm. The network thus represents
our assumptions that they do not perceive burglaries directly, they do not notice minor earth-
quakes, and they do not confer before calling.

The conditional distributions in Figure 14.2 are shown as a conditional probability
table, or CPT. (This form of table can be used for discrete variables; other representations,CONDITIONAL

PROBABILITY TABLE

including those suitable for continuous variables, are described in Section 14.2.) Each row
in a CPT contains the conditional probability of each node value for a conditioning case.CONDITIONING CASE

A conditioning case is just a possible combination of values for the parent nodes—a minia-
ture possible world, if you like. Each row must sum to 1, because the entries represent an
exhaustive set of cases for the variable. For Boolean variables, once you know that the prob-
ability of a true value is p, the probability of false must be 1 – p, so we often omit the second
number, as in Figure 14.2. In general, a table for a Boolean variable with k Boolean parents
contains 2k independently specifiable probabilities. A node with no parents has only one row,
representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary’s currently listening
to loud music or to the telephone ringing and confusing John. These factors are summarized
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls . This
shows both laziness and ignorance in operation: it would be a lot of work to find out why those
factors would be more or less likely in any particular case, and we have no reasonable way to
obtain the relevant information anyway. The probabilities actually summarize a potentially

524 Chapter 14. Probabilistic Reasoning

values. The structure of this computation is shown in Figure 14.8. Using the numbers from
Figure 14.2, we obtain P (b | j,m) = α× 0.00059224. The corresponding computation for
¬b yields α× 0.0014919; hence,

P(B | j,m) = α ⟨0.00059224, 0.0014919⟩ ≈ ⟨0.284, 0.716⟩ .

That is, the chance of a burglary, given calls from both neighbors, is about 28%.
The evaluation process for the expression in Equation (14.4) is shown as an expression

tree in Figure 14.8. The ENUMERATION-ASK algorithm in Figure 14.9 evaluates such trees
using depth-first recursion. The algorithm is very similar in structure to the backtracking al-
gorithm for solving CSPs (Figure 6.5) and the DPLL algorithm for satisfiability (Figure 7.17).

The space complexity of ENUMERATION-ASK is only linear in the number of variables:
the algorithm sums over the full joint distribution without ever constructing it explicitly. Un-
fortunately, its time complexity for a network with n Boolean variables is always O(2n)—
better than the O(n 2n) for the simple approach described earlier, but still rather grim.

Note that the tree in Figure 14.8 makes explicit the repeated subexpressions evalu-
ated by the algorithm. The products P (j | a)P (m | a) and P (j | ¬a)P (m | ¬a) are computed
twice, once for each value of e. The next section describes a general method that avoids such
wasted computations.

14.4.2 The variable elimination algorithm

The enumeration algorithm can be improved substantially by eliminating repeated calcula-
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and
save the results for later use. This is a form of dynamic programming. There are several ver-
sions of this approach; we present the variable elimination algorithm, which is the simplest.VARIABLE

ELIMINATION

Variable elimination works by evaluating expressions such as Equation (14.4) in right-to-left
order (that is, bottom up in Figure 14.8). Intermediate results are stored, and summations over
each variable are done only for those portions of the expression that depend on the variable.

Let us illustrate this process for the burglary network. We evaluate the expression

P(B | j,m) = α P(B)
︸ ︷︷ ︸
f1(B)

∑

e

P (e)
︸︷︷︸
f2(E)

∑

a

P(a |B, e)
︸ ︷︷ ︸

f3(A,B,E)

P (j | a)
︸ ︷︷ ︸

f4(A)

P (m | a)
︸ ︷︷ ︸

f5(A)

.

Notice that we have annotated each part of the expression with the name of the corresponding
factor; each factor is a matrix indexed by the values of its argument variables. For example,FACTOR

the factors f4(A) and f5(A) corresponding to P (j | a) and P (m | a) depend just on A because
J and M are fixed by the query. They are therefore two-element vectors:

f4(A) =

(
P (j | a)

P (j | ¬a)

)

=

(
0.90

0.05

)

f5(A) =

(
P (m | a)

P (m | ¬a)

)

=

(
0.70

0.01

)

.

f3(A,B,E) will be a 2× 2× 2 matrix, which is hard to show on the printed page. (The “first”
element is given by P (a | b, e)= 0.95 and the “last” by P (¬a | ¬b,¬e)= 0.999.) In terms of
factors, the query expression is written as

P(B | j,m) = α f1(B)×
∑

e

f2(E)×
∑

a

f3(A,B,E)× f4(A)× f5(A)

Factor zoo

Joint distribution: P(X,Y)
• Entries P(x,y) for all x, y
• Sums to 1

Selected joint: P(x,Y)
• A slice of the joint distribution
• Entries P(x,y) for fixed x, all y
• Sums to P(x)

Number of capitals =
dimensionality of the table

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3

Factor zoo 1

Single conditional: P(Y | x)
• Entries P(y | x) for fixed x, all y
• Sums to 1

Family of conditionals:
P(X |Y)

• Multiple conditionals
• Entries P(x | y) for all x, y
• Sums to |Y|

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6

Factor zoo 2

Specified family: P(y | X)
• Entries P(y | x) for fixed y, but for all x
• Sums to … who knows!

T W P

hot rain 0.2

cold rain 0.6

Factor zoo 3

Factor zoo summary
In general, when we write P(Y1 … YN | X1 … XM)

• It is a “factor,” a multi-dimensional array

• Its values are P(y1 … yN | x1 … xM)

• Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: traffic domain

Random Variables
• R: Raining
• T: Traffic
• L: Late for class!

T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)

Inference by enumeration: procedural outline
Track objects called factors
Initial factors are local CPTs (one per node)

Any known values are selected
E.g. if we know , the initial factors are

Procedure: Join all factors, then eliminate all hidden variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

Operation 1: join factors
First basic operation: joining factors
Combining factors:

• Like a database join
• Get all factors over the joining variable
• Build a new factor over the union of the variables

involved

Example: Join on R

• Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Example: multiple joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T

Operation 2: eliminate
Second basic operation: marginalization

Take a factor and sum out a variable
• Shrinks a factor to a smaller one

• A projection operation

Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

Multiple elimination

Sum
out R

Sum
out T

T, L LR, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886

P (L) = ?

Thus far: multiple join, multiple eliminate (= inference by
enumeration)

Marginalizing early (= variable elimination)

Traffic domain

Inference by EnumerationT

L

R P (L) = ?

Variable Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join	on	rJoin	on	r

Join	on	t

Join	on	t

Eliminate	r

Eliminate	t

Eliminate	r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate	t

Marginalizing early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T

Evidence
If evidence, start with factors that select that evidence

• No evidence uses these initial factors:

• With evidence, +r, the initial factors become:

We eliminate all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Result will be a selected joint of query and evidence
• E.g. for P(L | +r), we would end up with:

To get our answer, just normalize this!

That ’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize

Evidence

General variable elimination

Query:

Start with initial factors:
• Local CPTs (but instantiated by evidence)

While there are still hidden variables (not Q or
evidence):

• Pick a hidden variable H
• Join all factors mentioning H
• Eliminate (sum out) H

Join all remaining factors and normalize

General variable elimination

Query:

Start with initial factors:
• Local CPTs (but instantiated by evidence)

While there are still hidden variables (not Q or
evidence):

• Pick a hidden variable H
• Join all factors mentioning H
• Eliminate (sum out) H

Join all remaining factors and normalize

Example (on board first)

Example

Choose A

Next	choose	E

Finish	with	B

Normalize

Example

Same example in equations

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz (to sum out over a!)

joining on a, and then summing out gives f1

use x*(y+z) = xy + xz

joining on e, and then summing out gives f2

Another variable elimination example

Computational complexity critically
depends on the largest factor being
generated in this process. Size of
factor = number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X3 respectively).

Variable elimination ordering
• For the query P(Xn|y1,…,yn) work through the following two different orderings as done in previous

slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z. What is the size of the maximum factor generated for each
of the orderings?

• Answer: 2n+1 versus 22 (assuming binary)

• In general: the ordering can greatly affect efficiency.

…

…

VE: computational and space complexity
The computational and space complexity of variable elimination is
determined by the largest factor

The elimination ordering can greatly affect the size of the largest factor.
• E.g., previous slide’s example 2n vs. 2

Does there always exist an ordering that only results in small factors?
• No!

• Last time: representation and semantics

• Thus far today: inference. Remaining: approximate inference (and learning) via
sampling.

Bayes nets: so far

Sampling
Sampling is a lot like repeated simulation

• Predicting the weather, basketball games, …

Basic idea
• Draw N samples from a sampling distribution S

• Compute an approximate posterior probability

• Show this converges to the true probability P

Why sample?
• Learning: get samples from a

distribution you don’t know
• Inference: getting a sample is faster

than computing the right answer (e.g.
with variable elimination)

Sampling from given distribution
• Step 1: Get sample u from uniform

distribution over [0, 1)
• E.g. random() in python

• Step 2: Convert this sample u into an
outcome for the given distribution by
having each outcome associated
with a sub-interval of [0,1) with sub-
interval size equal to probability of
the outcome

Example

• If random() returns u = 0.83, then our sample
is C = blue

• E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

Sampling

Sampling in Bayes’ nets

• Prior Sampling

• Rejection Sampling

• Likelihood Weighting

• Gibbs Sampling

Prior sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c,	-s,	+r,	+w
-c,	+s,	-r,	+w

…

Prior sampling

For i=1, 2, …, n
Sample xi from P(Xi | Parents(Xi))

Return (x1, x2, …, xn)

Prior sampling

This process generates samples with probability:

…i.e. the BN’s joint probability

Let the number of samples of an event be

Then

i.e., the sampling procedure is consistent

Prior sampling

Example
We’ll get a bunch of samples from the BN:

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r, -w
+c, -s, +r, +w
-c, -s, -r, +w

If we want to know P(W)
• We have counts <+w:4, -w:1>
• Normalize to get P(W) = <+w:0.8, -w:0.2>
• This will get closer to the true distribution with more samples
• Can estimate anything else, too
• What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
• Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C

Rejection sampling

+c,	-s,	+r,	+w
+c,	+s,	+r,	+w
-c,	+s,	+r,		-w
+c,	-s,	+r,	+w
-c,		-s,		-r,	+w

Let’s say we want P(C)
• No point keeping all samples around
• Just tally counts of C as we go

Let’s say we want P(C| +s)
• Same thing: tally C outcomes, but ignore (reject) samples which

don’t have S=+s
• This is called rejection sampling
• It is also consistent for conditional probabilities (i.e., correct in the

limit)

S R

W

C

Rejection sampling

IN: evidence instantiation
For i=1, 2, …, n

Sample xi from P(Xi | Parents(Xi))

If xi not consistent with evidence
Reject: Return, and no sample is generated in this
cycle

Return (x1, x2, …, xn)

Rejection sampling

Likelihood weighting

Idea: fix evidence variables and sample the rest
§ Problem: sample distribution not consistent!
§ Solution: weight by probability of evidence given

parents

Problem with rejection sampling:
• If evidence is unlikely, rejects lots of samples
• Evidence not exploited as you sample
• Consider P(Shape|blue)

Shape ColorShape Color

pyramid,		green
pyramid,		red
sphere,					blue
cube,									red
sphere,						green

pyramid,		blue
pyramid,		blue
sphere,					blue
cube,									blue
sphere,						blue

Likelihood weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c,	+s,	+r,	+w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Likelihood weighting

IN: evidence instantiation
w = 1.0
for i=1, 2, …, n

if Xi is an evidence variable
Xi = observation xi for Xi
Set w = w * P(xi | Parents(Xi))

else
Sample xi from P(Xi |
Parents(Xi))

return (x1, x2, …, xn), w

Likelihood weighting

Sampling distribution if z sampled and e fixed evidence

Now, samples have weights

Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W

Likelihood weighting

Likelihood weighting is good
• We have taken evidence into account as we

generate the sample
• E.g. here, W’s value will get picked based on

the evidence values of S, R
• More of our samples will reflect the state of the

world suggested by the evidence

Likelihood weighting doesn’t solve all our
problems

§ Evidence influences the choice of downstream
variables, but not upstream ones (C isn’t more
likely to get a value matching the evidence)

We would like to consider evidence when we
sample every variable

à Gibbs sampling

Likelihood weighting

Gibbs sampling

• Procedure: keep track of a full instantiation x1, x2, …, xn. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

Gibbs sampling

• Procedure: keep track of a full instantiation x1, x2, …, xn. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

• Property: in the limit of repeating this infinitely many times the resulting sample is coming from
the correct distribution

Gibbs sampling

• Procedure: keep track of a full instantiation x1, x2, …, xn. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

• Property: in the limit of repeating this infinitely many times the resulting sample is coming from
the correct distribution

• Rationale: both upstream and downstream variables condition on evidence.

Gibbs sampling

• Procedure: keep track of a full instantiation x1, x2, …, xn. Start with an arbitrary instantiation
consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but
keep evidence fixed. Keep repeating this for a long time.

• Property: in the limit of repeating this infinitely many times the resulting sample is coming from
the correct distribution

• Rationale: both upstream and downstream variables condition on evidence.

• In contrast: likelihood weighting only conditions on upstream evidence, and hence weights
obtained in likelihood weighting can sometimes be very small. Sum of weights over all samples
is indicative of how many “effective” samples were obtained, so want high weight.

Gibbs sampling

Step 2: Initialize other variables
Randomly

Gibbs sampling example: P(S | +r)
Step 1: Fix evidence

R = +r

Steps 3: Repeat
Choose a non-evidence variable X
Resample X from P(X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C

Efficient resampling of one variable
Sample from P(S | +c, +r, -w)

Many things cancel out – only CPTs with S remain!
More generally: only CPTs that have resampled variable need to be considered, and
joined together

S +r

W

C

Bayes’ net sampling summary
Prior Sampling P

Likelihood Weighting P(Q | e)

Rejection Sampling P(Q | e)

Gibbs Sampling P(Q | e)

OK, that’s all for today!

• Up next: supervised machine learning!

