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Probabilistic models
Models describe how (a portion of) the world works

Models are always simplifications
• May not account for every variable
• May not account for all interactions between variables
• “All models are wrong; but some are useful.”

– George E. P. Box

What do we do with probabilistic models?
• We (or our agents) need to reason about unknown variables, 

given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information



A brief review of independence



Two variables are independent if:

• This says that their joint distribution factors into a product two 
simpler distributions

• Another form:

• We write: 

Independence is a simplifying modeling assumption
• Empirical joint distributions: at best “close” to independent

• Recall: What could we assume for {Weather, Traffic, Cavity, 
Toothache}?

Independence



Verifying independence

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

= product of marginals
= P(T)P(W)

joint distribution



Conditional independence: the fundamental 
assumption for Bayes nets. 



P(Toothache, Cavity, Catch*) *catch means probe finds a cavity

If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:

P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I don’t have a cavity:
P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Conditional independence



P(Toothache, Cavity, Catch*) *catch means probe finds a cavity

If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:

P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I don’t have a cavity:
P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
1. P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
2. P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
3. One can be derived from the other easily

Conditional independence



Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain 
environments.

X is conditionally independent of Y given Z, written 

if and only if:

or, equivalently, if and only if

Conditional independence (formal def)

(1)

(2)



Conditional independence
And then we had this example:

• Traffic
• Umbrella
• Raining

rain

umbrella traffic



Conditional independence and the chain rule
Chain rule: 

Trivial decomposition:

With assumption of conditional independence:

Bayes’nets / graphical models codify conditional independence assumptions

rain

umbrella traffic



Bayes’ Nets: the big picture



Two problems with using full joint distribution tables as 
our probabilistic models:

• Unless there are only a few variables, the joint is WAY too big to 
represent explicitly

• Hard to learn (estimate) anything empirically about more than a 
few variables at a time

Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)

• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect 

interactions

Bayes’ Nets: the big picture



Size of a Bayes’ Net
How big is a joint distribution over N 
Boolean variables?

2N

How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

Both give you the power to calculate

BNs: Huge space savings!

Also easier to elicit local CPTs

Also faster to answer queries (coming)



Extreme case: total independence

N fair, independent coin flips:

H 0.5
T 0.5

H 0.5
T 0.5

H 0.5
T 0.5



Example: coin flips

N independent coin flips

No interactions between variables: absolute independence

X1 X2 Xn



Only distributions whose variables are absolutely independent can 
be represented by a Bayes’ net with no arcs.

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

Example: coin flips



Example Bayes’ Net: insurance



Example Bayes’ Net: troubleshooting car



Bayes’ Net semantics



Graphical model notation

Nodes: variables (with domains)
• Can be assigned (observed) or unassigned 

(unobserved)

Arcs: direct interactions
• Similar to CSP constraints
• Indicate “direct influence” between variables
• Formally: encode conditional independence 

(more later)

For now: imagine that arrows mean 
direct causation (in general, they don’t! 
but in practice, they often do!)



A set of nodes, one per variable X

A directed, acyclic graph (DAG)

A conditional distribution for each node
• A collection of distributions over X, one for each combination 

of parents’ values

• CPT: conditional probability table

• Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities

Bayes’ Net semantics



Probabilities in BNs
Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:

• Example:



Why are we guaranteed that setting

results in a proper joint distribution?  

Chain rule (valid for all distributions): 

Assume conditional independences: 

à Consequence:

Probabilities in BNs



Bayes Nets: assumptions
Assumptions we are required to make to define the 
Bayes net when given the graph:

Beyond above “chain rule à Bayes net” conditional 
independence assumptions 

• Often additional conditional independences

• They can be read off the graph

Important for modeling: understand assumptions made 
when choosing a Bayes net graph

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))



Example: traffic

Variables:
• R: It rains
• T: There is traffic

Model 1: independence

Why is an agent using model 2 better?

R

T

R

T

Model 2: rain causes traffic



Example: Traffic

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16



Let’s build a causal graphical model!
Variables

• T: Traffic
• R: It rains
• L: Low pressure
• D: Roof drips
• B: Ballgame
• C: Cavity

Example: traffic



On causality: returning to our traffic example

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16



Why are we guaranteed that setting

results in a proper joint distribution?  

Chain rule (valid for all distributions): 

Assume conditional independences: 

à Consequence:

Probabilities in BNs



Example: reverse traffic

Reverse causality??!

T

R

+t 9/16
-t 7/16

+t +r 1/3
-r 2/3

-t +r 1/7
-r 6/7

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16



Causality?
When Bayes’ nets reflect the true causal patterns:

• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

BNs need not actually be causal
• Sometimes no causal net exists over the domain 

(especially if variables are missing)
• E.g. consider the variables Traffic and Drips
• End up with arrows that reflect correlation, not causation

What do the arrows really mean?
• Topology may happen to encode causal structure
• Topology really encodes conditional independence



Bayes’ Nets
So far: how a Bayes’ net encodes a joint distribution

Next: how to answer queries about that distribution
• Main goal: answer queries about conditional 

independence and influence 

After that: how to answer numerical queries (inference)



Independence in a BN
Important question about a BN:

• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example
• Example:

Question: are X and Z necessarily independent?
• Answer: no.  Example: low pressure causes rain, which causes traffic.
• X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?

X Y Z



D-separation: Outline



• Study independence properties for triples

• Analyze complex cases in terms of member triples

• D-separation: a condition / algorithm for answering such queries

D-separation: Outline



Causal chains
This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

Guaranteed X independent of Z ?   No!

One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

Example:

• Low pressure causes rain causes traffic, 
high pressure causes no rain causes no 
traffic



This configuration is a “causal chain” Guaranteed X independent of Z given Y?

Evidence along the chain “blocks” the influence
Yes!

Causal chains

X: Low pressure          Y: Rain                          Z: Traffic



Common cause
This configuration is a “common cause” Guaranteed X independent of Z ?   No!

One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

Example:

• Project due causes both forums busy and 
lab full 

Y: Project due

X: Forums 
busy Z: Lab full



Common cause
This configuration is a “common cause” Guaranteed X and Z independent given Y?   

Y: Project due

X: Forums 
busy Z: Lab full

Yes!

Observing the cause blocks influence 
between effects.



Common effect
Last configuration: two causes of one 
effect (v-structures)

Z:	Traffic

Are X and Y independent?
Yes: the ballgame and the rain cause traffic, but 
they are not correlated

Are X and Y independent given Z?

No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

This is backwards from the other cases
Observing an effect activates influence between 
possible causes.

X:	Raining Y:	Ballgame



The general case



General question: in a given BN, are two variables independent (given 
evidence)?

Solution: analyze the graph

Any complex example can be broken
into repetitions of the three canonical cases

The general case



Reachability

Recipe: shade evidence nodes, look 
for paths in the resulting graph

Attempt 1: check if paths between 
two given nodes are blocked or not

Almost works, but not quite
• Where does it break?
• Answer: the v-structure at T doesn’t 

count as a link in a path unless “active”

R

T

B

D

L



Active / Inactive paths
Question: Are X and Y conditionally independent given 
evidence variables {Z}?

• Yes, if X and Y “d-separated” by Z
• Consider all (undirected) paths from X to Y
• No active paths = independence!

A path is active if each triple is active:
• Causal chain A ® B ® C where B is unobserved (either direction)
• Common cause A ¬ B ® C where B is unobserved
• Common effect (aka v-structure)

A ® B ¬ C where B or one of its descendents is observed

All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



Query:

Check all (undirected!) paths between        and 
If one or more active, then independence not guaranteed

Otherwise (i.e. if all paths are inactive),then independence is 
guaranteed

D-Separation
Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}



Example

Yes R

T

B

T’



R

T

B

D

L

T’

Yes

Yes

Yes

Example



Example
Variables:

• R: Raining
• T: Traffic
• D: Roof drips
• S: I’m sad

Questions:

T

S

D

R

Yes



Structure implications
Given a Bayes net structure, can run d-separation 
algorithm to build a complete list of conditional 
independences that are necessarily true of the form

This list determines the set of probability 
distributions that can be represented 

Xi �� Xj |{Xk1 , ..., Xkn}



Computing all independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z



X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology limits distributions
• Given some graph topology 

G, only certain joint 
distributions can be encoded

• The graph structure 
guarantees certain 
(conditional) independences

• (There might be more 
independence)

• Adding arcs increases the 
set of distributions, but has 
several costs

• Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}



Bayes Nets representation summary
• Bayes nets compactly encode joint distributions

• Guaranteed independencies of distributions can be deduced from 
BN graph structure

• D-separation gives precise conditional independence guarantees 
from graph alone

• A Bayes’ net’s joint distribution may have further (conditional) 
independence that is not detectable until you inspect its specific 
distribution



That’s it for today!

• Next time: more on Bayes nets! (Estimation and inference!)
• START ON HOMEWORK 4!!!


