CS 4100 // artificial intelligence

INstructor: byron wallace

Recap/midterm review!

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

What have we covered?”

e Search!
- BFS, DFS, UCS
- A" and informed search

» Constraint Satisfaction Problems (CSPs)

» Adversarial Search / game playing / expecti-max

* Large areas; hon-exhaustive

What have we covered?” (continued)

» Markov Decision Processes (MDPs)

» Reinforcement Learning (RL)

* Markov Models (MMs) / Hidden Markov Models (HMMSs)
- And corresponding probability theory

* Large areas; hon-exhaustive

What have we covered?”

 Search!
- BFS, DFS, UCS
- A* and informed search

» Constraint Satisfaction Problems (CSPs)

» Adversarial Search / game playing / expecti-max

* Large areas; hon-exhaustive

Search basics

* Agents that Plan Ahead

« \We will treat plans as
search problems

* Uninformed Search Methods
- Depth-First Search
- Breadth-First Search

- Uniform-Cost Search

Search problems

A search problem consists of:

penen [- [.[-1.[

“N”, 1.0

/

.
“E”, 1.0

- A successor function
(with actions, costs)

- A start state and a goal test

A solution is a sequence of actions (a plan) that transforms the start state to
a goal state

World states v. search states

/ The world state includes every last detail of the environment \

N

/ A search state keeps only the details needed for planning (abstraction) \

Problem: Pathing Problem: Eat-All-Dots
« States: (x,y) location « States: {(x,y), dot booleans}
» Actions: NSEW » Actions: NSEW
« Successor: update location only » Successor:; update location and possibly
. Goal test: is (x,y)=END a dot boolean (if we eat food)
» (Goal test: dots all false

- /

State space graphs vs. search trees

/ State space graph\

Each node in
the search tree
IS an entire path

in the state
space graph.

-

Search tree

o~
d e p

——— P 1
b Cc e h r q
[[- N I
a a h r p qg f

N [' i

p aq f q C

' —_~ .

q G a

Depth-First Search (DFES)

Strategy expand a deepest node first

Implementation Fringe is a stack (LIFO)

Breadth-First Search (BFS)

Strategy expand a shallowest node first Q @
Implementation Fringe is a FIFO queue QD/V o e
© 0
e M
Oy (D
4 S,
@ © ®
Search S |
. ® © O & © @
Tiers | | N N |
(@ a »h r p q f
RN | | RN
. qg f q S
|
PN)

Uniform Cost Search (UCS)

Strategy expand a cheapest node first:

Fringe is a priority queue (priority:
cumulative cost)

e
@ 3
P
Cost< @6 a w13 ()7
contours A

Informed search: A* and beyond

Search heuristics

A heuristic Is

* A function that estimates how close a state is to a goal / /\\\

« Designed for a particular search problem NOPE= T\ Gonu!

« What might we use for PacMan (e.g., for pathing)? Manhattan
distance, Euclidean distance

>
Heuriski —Tron J

< ———4) '
=

Heuristi — Tron J

Combining UCS and Greedy

« Uniform-cost orders by path cost, or backward cost g(n)
» Greedy orders by goal proximity, or forward cost h(n)

8
h=1
1
2
: (e)
h=2 h=0
« A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Admissible heuristics, formally

A heuristic /4 is admissible (optimistic) if:
0 < h(n) < h™(n)
where h™*(n) is the true cost to a nearest goal.

Coming up with admissible heuristics is most of what’s involved in using
A* In practice.

Consistency of heuristics

Main idea: estimated heuristic costs < actual costs
» Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
» Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to O)

Consequences of consistency:
The f value along a path never decreases

h(A) < cost(A to C) + h(C)

A* graph search is optimal

Search example problem

What have we covered?”

e Search!
- BFS, DFS, UCS
- A" and informed search

* Constraint Satisfaction Problems (CSPs)

» Adversarial Search / game playing / expecti-max

* Large areas; hon-exhaustive

Constraint Satisfaction Problems (CSPS)

Standard search problems:
« State is a “black box”: arbitrary data structure
» Goal test can be any function over states
» Successor function can also be anything

Constraint satisfaction problems (CSPs):

* A special subset of search problems

« State is defined by variables X; with values from a domain
D (sometimes D depends on i5

» (Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

Constraint graphs

-iltering: forward checking

Filtering: Keep track of domains for unassigned variables and cross off bad option

NT| Q

SA NSW,

WA

WA NT Q NSW Vv SA

~lltering. constraint propagation

Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW \'} SA
VT i T Ir I IrE IrE I
‘ A Toow) | (BB EEIEECE] W
b I Tl 1L I

« NT and SA cannot both be blue!
« Why didn’t we detect this yet?
« Constraint propagation: reason from constraint to constraint

Consistency of a single arc

An arc X — Y is consistent iff for every x in the tall there is some y in the head which could
be assigned without violating a constraint

L

WA NT Q NSW \' SA
NT
- T I I T I 1

-y W
v

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Ordering: minimum remaining values

Variable Ordering: Minimum remaining values (MRV):
« Choose the variable with the fewest legal left values in its domain

_5:

* Why min rather than max?

* Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: least constraining value

Value Ordering: Least Constraining Value .
» Given a choice of variable, choose the least constraining value “_LI:

\ =

» |.e., the one that rules out the fewest values in the remaining
variables

» Note that it may take some computation to determine this!
(E.g., rerunning filtering)

<

Why least rather than most?

Combining these ordering ideas makes
1000 queens feasible

Tree-structured CSPs

Algorithm for tree-structured CSPs:

Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i =n: 2, apply Removelnconsistent(Parent(X),X;
Assign forward: For i = 1 : n, assign X consistently with Parent(X;)

CS

P example problem

What have we covered?”

e Search!
- BFS, DFS, UCS
- A" and informed search

» Constraint Satisfaction Problems (CSPs)

» Adversarial Search / game playing / expecti-max

* Large areas; hon-exhaustive

Adversarial search

Adversarial game trees

ViNnimax values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(') V(s') = min V(s)
s’ €successors(s) sesuccessors(s’)

Terminal States:
V(s) = known

Adversarial search (Minimax)

Deterministic, zero-sum games: Minimax values:
» Tic-tac-toe, chess, checkers computed recursively
* One player maximizes result
* The other minimizes result max

Minimax search:

min
» A state-space search tree
» Players alternate turns / \ / \
« Compute each node’s minimax value: the
best achievable utility against a rational / \ / \
(optimal) adversary 8 2 5 6
MINIMAX(s) = Terminal values:

art of the game
UTILITY (s) if TERMINAL-TEST(s) P J

MaX e Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
MiNge Actions(s) MINIMAX (RESULT (s,a)) if PLAYER(S) = MIN

Pruning

Mmax

min

What did we do that was inefficient here?

Minimax pruning

Mmax

min

—valuation Tunctions

Evaluation functions score non-terminals in depth-limited search

White to move

Black to move

White slightly better Black winning

Ideal function: returns the actual minimax value of the position
In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

e.g. fi(s) = (hum white queens — num black queens), etc.

Adversarial search example problem

What have we covered?” (continued)

 Markov Decision Processes (MDPs)

» Reinforcement Learning (RL)

* Markov Models (MMs) / Hidden Markov Models (HMMSs)
- And corresponding probability theory

* Large areas; hon-exhaustive

\Varkov Declision Processes

An MDP is defined by
« States € S
Actionsa € A
Transition function T(s, a, s)
Probability that a from s leads to s, i.e., P(s’| s, a)
Also called the model or the dynamics
Reward function R(s, a, s')
Sometimes just R(s) or R(s’)
Start state
Maybe a terminal state

MDPs are non-deterministic search problems

» One way to solve them is with expectimax search; but
we’ll do better

* They can go on forever
« Arguably, life is an MDP

Optimal quantities

The value (utility) of a state s
V'(s) = expected utility starting in s and acting optimally

The value (utility) of a g-state (s,a)

Q'(s,a) = expected utility starting out having taken action a
from state s and (thereafter) acting optimally

The optimal policy

7 (S) = optimal action from state s

sis a
state

(s,a)is a
g-state

(s,a,s’)is a
transition

Values of states

Fundamental operation: compute the (expectimax) value of a state
» Expected utility under optimal action
» This will be an average sum of (discounted) rewards
» This is just what expectimax computed!

Recursive definition of value: .
V*(s) = max QR*(s,a) s,a,5

Q*(s,a) = ZT(S, a,s) {R(S, a,s) + ’)/V*(S/)}

V*i(s) = mC?XZT(S’ a,s) {R(S,CL, ") + 7\/*(3’)}

S

Value Iteration

Start at bottom with V,(s) = 0: no time steps left means an expected
reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:
Vig1(s) < max Y T(s,a,s") |R(s,a,8") + V()
8/

Repeat until convergence

Complexity of each iteration: O(S°A)

Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values (but will only
converge if we use a discount / have a finite horizon!)

- Policy often converges before values!

MD

Ps problem

What have we covered?” (continued)

» Markov Decision Processes (MDPs)

* Reinforcement Learning (RL)

* Markov Models (MMs) / Hidden Markov Models (HMMSs)
- And corresponding probability theory

* Large areas; hon-exhaustive

Reinforcement leaming

Agent
State: s o
Reward: r Actions: a
Environment
Basic idea:

* Receive feedback in the form of rewards

« Agent’s utility is defined by the reward function

* Must (learn to) act so as to maximize expected rewards
« All learning is based on observed samples of outcomes!

emporal Difference Learning (model freel)

Big idea: learn from every experience!

» Update V(s) each time we experience a transition (s, a, s’, r) >
» Likely outcomes s’ will contribute updates more often Tt(s)
s, Tt(s)
Temporal difference learning of values
» Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average A S

Sample of V(s): sample = R(s,m(s),s") + V7 (s)

Updateto V(s): V7™ (s) + (1 —a)V7™(s) + (a)sample

Canrewriteas: V7 (s) < V™(s) 4+ a(sample — V7 (s))

Q-Leamning

Q-Learning: sample-based Q-value iteration
Qit1(s,0) - Y T(s,0,5) |R(s,a,5) +7 maxQy(s',a)
/ a

S
Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,1)

« Consider your old estimate: Q(s,a) >i4>i4i 1.00

» Consider your new sample estimate: AAA
sample = R(s,a,s’) +~ max Q(s',a") >i<.>i4 1,00

* Incorporate the new estimate into a running average: WWW
Q(s,a) — (1 -)Q(s,a) + (a) [sample] AN ZAANVANVAN

Q-VALUES AFTER 1000 EPISODES

—xploration functions

When to explore?
« Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

* Takes a value estimate u and a visit count n, and returns
an optimistic utility, e.g.

f(u,n) =u+k/n
Regular Q-Update: Q(s,a) < R(s,a,s") +~ max Q(s',a")

Modified Q-Update: Q(s,a) <a R(s,a,s") +ymax f(Q(s',a"), N(s',a))
a

KL problem example

What have we covered?” (continued)

» Markov Decision Processes (MDPs)

» Reinforcement Learning (RL)

 Markov Models (MMs) / Hidden Markov Models (HMMs)
- And corresponding probability theory

* Large areas; hon-exhaustive

Chain rule and Markov models

=@ -~

From the chain rule, every joint distribution over X1, Xo, ..., X7 can be written as:

T
P(X1,Xa,...,X7) = P(X0) | [P(X¢| X1, Xa, .., Xio1)

t=2

Assuming that for all t:
Xe L X1, X | Ximy

Gives us the expression posited on the earlier slide:

T
P(X1,X2,...,X7) :P(Xl)HP(Xt‘Xt—l)
1=2

Mini-forward algorithm

Question: What's P(X) on some day t”

=@~ --+

P(x1) = known

P(a:t) = Z P(xi_1,x4)

Tt—1

The chain rule and HMMSs, In general g@ é:

From the chain rule, every joint distribution over X4, E4,..., X7, Ep can be written as:

T
P(XlaEla"'7XT7ET) :P<X1)P<E1‘Xl)HP<Xt’X17E17"'7Xt—17Et—1)P(Et‘X17E17'")Xt—lyEt—laXt>

t=2

Assuming that for all t:
State independent of all past states and all past evidence given the previous state, i.e.:

Xt AL X17 E17 <o 7Xt—27 Et—27 Et—l | Xt—l
Evidence is independent of all past states and all past evidence given the current state, i.e.:

E, U X9, F,..., X0, By o, Xe1,Er1 | Xy

Which gives us:
T

P(Xy,By,..., Xy, Ep) = P(X1)P(Ey | X1) | | P(Xi| Xi-1) P(E| Xy)
t=2

Implied conditional independencies

D@D

offc

Many implied conditional independencies, e.g.,

Ei1 U Xo, Fo, X3, FE3 | X4

We can prove these as we did last class for Markov models (but we won'’t today)
This also comes from the graphical model; we'll cover this more formally in a later lecture

Dynamic programming (the “forward algorithm”)

Oy = Observations

) @

Markov model problem example

