
Recap/midterm review!

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

What have we covered?*

• Search!
- BFS, DFS, UCS
- A* and informed search

• Constraint Satisfaction Problems (CSPs)

• Adversarial Search / game playing / expecti-max

* Large areas; non-exhaustive

What have we covered?* (continued)

• Markov Decision Processes (MDPs)

• Reinforcement Learning (RL)

• Markov Models (MMs) / Hidden Markov Models (HMMs)
- And corresponding probability theory

* Large areas; non-exhaustive

What have we covered?*

• Search!
- BFS, DFS, UCS
- A* and informed search

• Constraint Satisfaction Problems (CSPs)

• Adversarial Search / game playing / expecti-max

* Large areas; non-exhaustive

Search basics
• Agents that Plan Ahead

• We will treat plans as
search problems

• Uninformed Search Methods
- Depth-First Search
- Breadth-First Search
- Uniform-Cost Search

Search problems
A search problem consists of:

- A state space

- A successor function
(with actions, costs)

- A start state and a goal test

A solution is a sequence of actions (a plan) that transforms the start state to
a goal state

“N”, 1.0

“E”, 1.0

World states v. search states

Problem: Pathing
• States: (x,y) location
• Actions: NSEW
• Successor: update location only
• Goal test: is (x,y)=END

Problem: Eat-All-Dots
• States: {(x,y), dot booleans}
• Actions: NSEW
• Successor: update location and possibly

a dot boolean (if we eat food)
• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State space graphs vs. search trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Each node in
the search tree
is an entire path

in the state
space graph.

Search treeState space graph

Depth-First Search (DFS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy expand a deepest node first
Implementation Fringe is a stack (LIFO)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy expand a shallowest node first
Implementation Fringe is a FIFO queue

Breadth-First Search (BFS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy expand a cheapest node first:

Fringe is a priority queue (priority:
cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2

Uniform Cost Search (UCS)

Informed search: A* and beyond

A heuristic is
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• What might we use for PacMan (e.g., for pathing)? Manhattan

distance, Euclidean distance

10

5

11.2

Search heuristics

Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g =	0	
h=6

g =	1	
h=5

g =	2	
h=6

g =	3	
h=7

g =	4	
h=2

g =	6	
h=0

g =	9	
h=1

g =	10	
h=2

g =	12	
h=0

Admissible heuristics, formally

A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal.

Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

Consistency of heuristics

Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:

The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Search example problem

What have we covered?*

• Search!
- BFS, DFS, UCS
- A* and informed search

• Constraint Satisfaction Problems (CSPs)

• Adversarial Search / game playing / expecti-max

* Large areas; non-exhaustive

Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a domain

D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Constraint Satisfaction Problems (CSPs)

CSP Examples

Constraint graphs

Filtering: Keep track of domains for unassigned variables and cross off bad option

Filtering: forward checking

WA
SA
NT Q

NSW
V

Filtering: constraint propagation
Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

Consistency of a single arc
An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could
be assigned without violating a constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

WA SA

NT Q

NSW

V

Ordering: minimum remaining values
Variable Ordering: Minimum remaining values (MRV):

• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

Ordering: least constraining value
Value Ordering: Least Constraining Value

• Given a choice of variable, choose the least constraining value
• I.e., the one that rules out the fewest values in the remaining

variables
• Note that it may take some computation to determine this!

(E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes
1000 queens feasible

Algorithm for tree-structured CSPs:
Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Tree-structured CSPs

CSP example problem

What have we covered?*

• Search!
- BFS, DFS, UCS
- A* and informed search

• Constraint Satisfaction Problems (CSPs)

• Adversarial Search / game playing / expecti-max

* Large areas; non-exhaustive

Adversarial search

Adversarial game trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

-10-8

-8

Adversarial search (Minimax)
Deterministic, zero-sum games:

• Tic-tac-toe, chess, checkers
• One player maximizes result
• The other minimizes result

Minimax search:
• A state-space search tree
• Players alternate turns
• Compute each node’s minimax value: the

best achievable utility against a rational
(optimal) adversary 8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Pruning

12 8 5 23 3 144 6

What did we do that was inefficient here?

max

min

Minimax pruning

12 8 5 23 3 14

max

min

Evaluation functions
Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position
In practice: typically weighted linear sum of features:

e.g. f1(s) = (num white queens – num black queens), etc.

Adversarial search example problem

What have we covered?* (continued)

• Markov Decision Processes (MDPs)

• Reinforcement Learning (RL)

• Markov Models (MMs) / Hidden Markov Models (HMMs)
- And corresponding probability theory

* Large areas; non-exhaustive

Markov Decision Processes
An MDP is defined by

• States Î S
• Actions a Î A
• Transition function T(s, a, s’)

Probability that a from s leads to s’, i.e., P(s’| s, a)
Also called the model or the dynamics

• Reward function R(s, a, s’)
Sometimes just R(s) or R(s’)

• Start state
• Maybe a terminal state

MDPs are non-deterministic search problems
• One way to solve them is with expectimax search; but

we’ll do better
• They can go on forever
• Arguably, life is an MDP

Optimal quantities

The value (utility) of a state s
V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a)
Q*(s,a) = expected utility starting out having taken action a

from state s and (thereafter) acting optimally

The optimal policy
p*(s) = optimal action from state s

a

s

s’

s,	a

(s,a,s’)	is	a	
transition

s,a,s’

s	is	a	
state

(s,	a)	is	a	
q-state

Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action
• This will be an average sum of (discounted) rewards
• This is just what expectimax computed!

Recursive definition of value:

a

s

s,	a

s,a,s’
s’

Values of states

• Start at bottom with V0(s) = 0: no time steps left means an expected
reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values (but will only

converge if we use a discount / have a finite horizon!)
- Policy often converges before values!

a

Vk+1(s)

s,	a

s,a,s’

)s’(kV

Value iteration

MDPs problem

What have we covered?* (continued)

• Markov Decision Processes (MDPs)

• Reinforcement Learning (RL)

• Markov Models (MMs) / Hidden Markov Models (HMMs)
- And corresponding probability theory

* Large areas; non-exhaustive

Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: aState: s
Reward: r

Reinforcement learning

Temporal Difference Learning (model free!)
Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s,	p(s)

s’

Sample of V(s):

Update to V(s):

Can rewrite as:

Q-Learning
Q-Learning: sample-based Q-value iteration

Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

Exploration functions
When to explore?

• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

Exploration function
• Takes a value estimate u and a visit count n, and returns

an optimistic utility, e.g.

Modified Q-Update:

Regular Q-Update:

RL problem example

What have we covered?* (continued)

• Markov Decision Processes (MDPs)

• Reinforcement Learning (RL)

• Markov Models (MMs) / Hidden Markov Models (HMMs)
- And corresponding probability theory

* Large areas; non-exhaustive

From the chain rule, every joint distribution over can be written as:

Assuming that for all t:

Gives us the expression posited on the earlier slide:

X2X1 X3 X4

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT

Chain rule and Markov models

Mini-forward algorithm

Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (x
t�1, xt

)

=
X

xt�1

P (x
t

| x
t�1)P (x

t�1)

From the chain rule, every joint distribution over can be written as:

Assuming that for all t:
State independent of all past states and all past evidence given the previous state, i.e.:

Evidence is independent of all past states and all past evidence given the current state, i.e.:

Which gives us:

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET) = P (X1)P (E1|X1)
TY

t=2

P (Xt|X1, E1, . . . , Xt�1, Et�1)P (Et|X1, E1, . . . , Xt�1, Et�1, Xt)

Xt ?? X1, E1, . . . , Xt�2, Et�2, Et�1 | Xt�1

X2

E1

X1 X3

E2 E3

Et ?? X1, E1, . . . , Xt�2, Et�2, Xt�1, Et�1 | Xt

P (X1, E1, . . . , XT , ET) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)

The chain rule and HMMs, in general

Implied conditional independencies

Many implied conditional independencies, e.g.,

We can prove these as we did last class for Markov models (but we won’t today)
This also comes from the graphical model; we’ll cover this more formally in a later lecture

X2

E1

X1 X3

E2 E3

E1 ?? X2, E2, X3, E3 | X1

Dynamic programming (the “forward algorithm”)

time	T	

Markov model problem example

