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' Markov Models
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loday

« \WWe'll cover conditional independence in some depth
* And build up to Markov models



Review: the product rule

P(y)P(zly) = P(xz,y)

Example:

P(D|W) P(D,W)
P(W) D W P D W
= o wet sun | 0.1 wet sun
sn_| 08 oy | on 09 oy | dv | en
) wet rain | 0.7 wet rain
rain 0.2

dry rain | 0.3 dry rain




The chain rule

More generally, can always write any joint distribution as an
iIncremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(z1,x2,...xzn) = || P(ailzy ... 2-1)
7



Bayes’ rule

Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(y|x)P(x) That's my rule! ]

Dividing, we get:

PGaly) = 50 Pa)

Why is this at all helpful?

 Lets us build one conditional from its reverse
» Often one conditional is tricky but the other one is simple
« Foundation of many systems we’ll see later (e.g. ASR, MT)

In the running for most important Al equation!



INndependence

Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)

Va,y P(a,y) = P(@)P(y) o)

« Says the joint distribution factors into a product of two simple ones
» Usually variables aren’t independent!

We can use independence as a modeling assumption
* Independence can be a simplifying assumption
« Empirical joint distributions: at best “close” to independent
» What could we assume for {Weather, Traffic, Cavity}?

Independence is like something from CSPs: what?



—xample: Independence’’

Pi(T, W)

T W P
hot sun | 0.4
not ran | O.1

cold sun | 0.2
cold ran | 0.3

Py (Tv W) —
T W P
not sun | 0.3
not ran | 0.2
cold sun | 0.3
cold ran | 0.2

P(T)
T P
not 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 0.4




—xample: Independence’’

N fair, independent coin flips:

P(X1) P(X>) P(Xn)
H |05 H |05 o H |05
T | o5 T |05 T |05

N~

—

P(X1, X0, ... Xn)

2™




Conditional independence




Conditional independence

P(Toothache, Cavity, Catch®) *catch means probe finds/gets stuck in a cavity

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional independence (formal def)

Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain
environments,

X is conditionally independent of Y given Z, written

X1UY|Z
it and only If:

Va,y,z 1 P(x,ylz) = P(a|2)P(ylz) 1)
or, equivalently, if and only if

Va,y, 2 P(alz,y) = P(a|2) 2



Proving equivalence (on board)

Vo,y,z 1 P(x,y|z) = P(z|z) P(y|z) «~—— Vz,y,z : P(z|z,y) = P(z|2)

(1) 2)



Conditional independence

What about this domain:

 Traffic
« Umbrella
« Raining

Reasonable independence assumption here?



Conditional independence

What about this domain:

* Traffic
o Umbrella

 Raining /“C’m




Conditional independence

What about this domain: L Sy S

22 TN
» Fire S5
« Smoke
o Alarm /%g@ @:87 @ )
gL +




Conditional independence

What about this domain: 0 TN
+ Fire e
e

« Smoke @ |
* Alarm /452@ BLY
| »‘5; : (@E 1? Sl

@ I N ] L




Probability recap

Conditional probability P(zly) = P(z,y)

Product rule
P(z,y) = P(z|y)P(y)

» Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3|X1,X2) ...
= ]] P(XilX1,..., Xi-1)
i=1
« X, Y independent if and only if: Vae,y : P(z,y) = P(x)P(y)

Xand Y are conditionally independent given Z (X Il Y'| Z) if and only if:

Va,y,z 1 P(x,y|z) = P(z]z)P(y|z)



Markov models

e



Reasoning over time or space

Often, we want to reason about a sequence of observations
« Speech recognition
» Robot localization
« User attention
» Medical monitoring

Need to introduce time (or space) into our models



Markov models

Value of X at a given time is called the state

Q=@ -+

P(X1) P(X3[X¢—1)

Parameters: called transition probabilities or dynamics, specifty how the state evolves
over time (also, initial state probabilities)

Stationarity assumption: transition probabilities the same at all times

Same as MDP transition model, but no choice of action



Joint distribution of a Markov model

P(X1)  P(XyXi—1)

Joint distribution:

P(X1, X5, X3,X4) = P(X1)P(X2|X1)P(X3| X2)P(X4| X3)
More generally:

P(X1,Xs,...,X7) = P(X1)P(X2|X1)P(X35|X2) ... P(X7|X7_1)

T
= P(Xy) | [ P(X:e|Xio1)

Questions to be resolved: =2

» Does this indeed define a joint distribution?

» Can every joint distribution be factored this way, or are we making some assumptions
about the joint distribution by using this factorization?



Chain rule and Markov models

From the chain rule, every joint distribution over X, X5, X3, X, can be written as:
P(X1, Xa, X3, Xy) = P(X1)P(X2|X1) P(X3]| X1, Xo) P(X4]| X1, X2, X3)

Assuming that

Results in the expression posited on the previous slide:

P(X1, X2, X5, X4) = P(X1)P(X5|X1) P (X3 X)) P(X4| X5)



Chain rule and Markov models

=@ -~

From the chain rule, every joint distribution over X1, Xo, ..., X7 can be written as:

T
P(X1,Xa,...,X7) = P(X0) | [ P(X¢| X1, Xa, .., Xio1)

t=2

Assuming that for all t:
Xe L X1, X | Ximy

Gives us the expression posited on the earlier slide:

T
P(X1,X2,...,X7) :P(Xl)HP(Xt‘Xt—l)
1=2



Implied conditional independencies

We assumed: X3 1L X5 | Xo and X4 1L X1, X5 | X3

Do we also have X; 1l X3, X4 | X57
* Yes! Though we did not explicitly make this assumption!
« Proof: on board



Implied conditional independencies

We assumed: X3 1L X5 | Xo and X4 1L X1, X5 | X3

Do we also have X; 1l X3, X4 | X57
* Yes!

: P(Xq, X9, X3, X
e Proof: P(Xl ’ X2,X3,X4) _ ( 1,22, A3, 4)

P(X5, X3, Xy)
P(X1)P(Xs | X1)P(X3 | Xo)P(Xy | X5)

> w, P(x1)P(X2 | 21)P(X3 | Xo)P(Xy | X3)
B P(X1,X5)
P(X3)
= P(X; | X2)




Markov models recap

Explicit assumption forall t: X; 1 Xq,..., X; o | X1
Conseqguence, joint distribution can be written as:

P(X1,Xs,...,X7) = P(X1)P(X2|X1)P(X5|X2) ... P(Xp| X7_1)

= P(X1) | | P(X¢|Xi—1)

Past variables independent of future variables given the present
e, if t1<ta<ts oOr t; >ty >t3 then: X, 1L X,, | X,

Additional explicit assumption: P(X; | X;—1) is the same for all t



—xample Markov chain: the weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

CPT POX. | Xi4):

Two new ways of representing the same CPT

Xiqa | X | POXIX)
sun | sun 0.9 0.9
. 0.9
sun | ran 0.1 sun sun
rain | sun 0.3 v
)
rain | rain 0.7 A
0.7




—xample Markov chain: the weather

Initial distribution: 1.0 sun

What is the probability distribution after one step”?

P(XQ = Sun) =
P(X, = sun|Xy = rain)P(X1 = rain)

+0.3-0.0=0.9

_|_

0.9



Mini-forward algorithm

Question: What's P(X) on some day t”

=@~ --+

P(x1) = known

P(a:t) = Z P(xi_1,x4)

Tt—1




—xample run of mini-forward algorithm

From initial observation of sun

(00) (o1) (oie) {oms ) =>(03s

P(X)) P(X) P(X3) P(Xy) P(X,)

From initial observation of rain

(10) (o7} {052 {oar2)=>{0zs)

P(X)) P(X) P(X3) P(Xy) P(X,)

From yet another initial distribution P(X,):

L) = {02

P(X)) P(X,)



Stationary distributions

For most chains: Stationary distribution:
« Influence of the initial distribution gets less and * The distribution we end up with is called the
less over time stationary distribution P, of the chain
» The distribution we end up in is independent of * It satisfies

the initial distribution

Pao(X) = Poos1(X) = 3 P(X|2) P (2)




—xample: stationary distributions

Question: What'’s P(X) at time t = infinity?

O-@-Or@ -

Py (sun) = P(sun|sun)Ps (sun) + P(sun|rain) P (rain)
Py (rain) = P(rain|sun)Ps (sun) + P(rain|rain) Py (rain)
P (sun) = 0.9P (sun) + 0.3 P (rain)

Py (rain) = 0.1 P (sun) 4+ 0.7 Py (rain)

Py (sun) = 3P (rain)

Poo(rain) = 1/3 P (sun)

Py (sun) = 3/4
Also: P (sun) + Py (rain) =1 @ Py (rain) = 1/4

XH Xt <><t‘><t—1 )
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7




IN-class exercise on Markov chans. ..



| et’'s review



That's it for toaay!

 Next time: Hidden Markov Models



sSome notes on the midterm

* In-class
» Closed book / laptop / calculator / notes / etc

* Probably 4-5 multi-part questions, probing your understanding
of the big approaches/models we’ve covered

* Review Iin class next Tuesday!



