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Today

• We’ll cover conditional independence in some depth
• And build up to Markov models



Example:

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

D W P
wet sun 0.08
dry sun 0.72
wet rain 0.14
dry rain 0.06

Review: the product rule



The chain rule
More generally, can always write any joint distribution as an 
incremental product of conditional distributions



Bayes’ rule
Two ways to factor a joint distribution over two variables:

Dividing, we get:

Why is this at all helpful?
• Lets us build one conditional from its reverse
• Often one conditional is tricky but the other one is simple
• Foundation of many systems we’ll see later (e.g. ASR, MT)

In the running for most important AI equation!

That’s my rule!



Independence
Two variables are independent in a joint distribution if:

• Says the joint distribution factors into a product of two simple ones
• Usually variables aren’t independent!

We can use independence as a modeling assumption
• Independence can be a simplifying assumption
• Empirical  joint distributions: at best “close” to independent
• What could we assume for {Weather, Traffic, Cavity}?

Independence is like something from CSPs: what?



Example: Independence?

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

P2(T,W ) = P (T )P (W )



N fair, independent coin flips:

H 0.5
T 0.5

H 0.5
T 0.5

H 0.5
T 0.5

Example: Independence?



Conditional independence



P(Toothache, Cavity, Catch*) *catch means probe finds/gets stuck in a cavity

If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:

P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I don’t have a cavity:
P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily

Conditional independence



Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain 
environments.

X is conditionally independent of Y given Z, written 

if and only if:

or, equivalently, if and only if

Conditional independence (formal def)

(1)

(2)



Proving equivalence (on board)

(1) (2)



Conditional independence
What about this domain:

• Traffic
• Umbrella
• Raining

Reasonable independence assumption here? 



Conditional independence
What about this domain:

• Traffic
• Umbrella
• Raining

rain

umbrella traffic



What about this domain:
• Fire
• Smoke
• Alarm

Conditional independence



What about this domain:
• Fire
• Smoke
• Alarm

Conditional independence

fire

smoke

alarm



Probability recap
• Conditional probability

• Product rule

• Chain rule 

• X, Y independent if and only if:

• X and Y are conditionally independent given Z (                  ) if and only if:



Markov models



Reasoning over time or space

Often, we want to reason about a sequence of observations
• Speech recognition
• Robot localization
• User attention
• Medical monitoring

Need to introduce time (or space) into our models



Value of X at a given time is called the state

Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)

Stationarity assumption: transition probabilities the same at all times

Same as MDP transition model, but no choice of action

Markov models

X2X1 X3 X4



Joint distribution of a Markov model

Joint distribution:

More generally:

Questions to be resolved:
• Does this indeed define a joint distribution?
• Can every joint distribution be factored this way, or are we making some assumptions 

about the joint distribution by using this factorization?

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)



Chain rule and Markov models

From the chain rule, every joint distribution over                            can be written as:

Assuming that
and

Results in the expression posited on the previous slide: 

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

X1, X2, X3, X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1, X2)P (X4|X1, X2, X3)

X4 ?? X1, X2 | X3X3 ?? X1 | X2



From the chain rule, every joint distribution over                                  can be written as:

Assuming that for all t: 

Gives us the expression posited on the earlier slide: 

X2X1 X3 X4

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT

Chain rule and Markov models



Implied conditional independencies

We assumed:                              and

Do we also have ?
• Yes! Though we did not explicitly make this assumption!
• Proof: on board

X2X1 X3 X4

X4 ?? X1, X2 | X3X3 ?? X1 | X2

X1 ?? X3, X4 | X2



Implied conditional independencies

We assumed:                              and

Do we also have ?
• Yes! 
• Proof:

X2X1 X3 X4

X4 ?? X1, X2 | X3X3 ?? X1 | X2

X1 ?? X3, X4 | X2

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)



Markov models recap
Explicit assumption for all t:
Consequence, joint distribution can be written as: 

Past variables independent of future variables given the present
i.e., if                     or                    then:

Additional explicit assumption:                      is the same for all t

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Xt1 ?? Xt3 | Xt2t1 < t2 < t3 t1 > t2 > t3

P (Xt | Xt�1)



Example Markov chain: the weather

States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1
0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)
sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

Initial distribution: 1.0 sun

CPT P(Xt | Xt-1):



Initial distribution: 1.0 sun

What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

Example Markov chain: the weather



Mini-forward algorithm

Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (x
t�1, xt

)

=
X

xt�1

P (x
t

| x
t�1)P (x

t�1)



Example run of mini-forward algorithm
From initial observation of sun

From initial observation of rain

From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…



Stationary distribution:
• The distribution we end up with is called the 

stationary distribution of the chain
• It satisfies

Stationary distributions

For most chains:
• Influence of the initial distribution gets less and 

less over time
• The distribution we end up in is independent of 

the initial distribution
P1(X) = P1+1(X) =

X

x

P (X|x)P1(x)

P1



Example: stationary distributions

Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)
sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:



In-class exercise on Markov chains…



Let’s review



That’s it for today!

• Next time: Hidden Markov Models



Some notes on the midterm

• In-class
• Closed book / laptop / calculator / notes / etc
• Probably 4-5 multi-part questions, probing your understanding 

of the big approaches/models we’ve covered
• Review in class next Tuesday!


