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Where are we?
We’re done with Part I Search and Planning!

Part II: Probabilistic Reasoning
• Diagnosis
• Speech recognition
• Tracking objects
• Robot mapping
• Genetics
• Error correcting codes
• … lots more!

Part III: Machine Learning



Today
Probability

• Random Variables
• Joint and Marginal Distributions
• Conditional Distribution
• Product Rule, Chain Rule, Bayes’ Rule
• Inference
• Independence

You’ll need all this stuff A LOT for the next few 
weeks, so make sure you go over it now!



But wait, why do we need to do all this math?



Eugene Charniak, Brown University

Two eras of Natural Language Processing: Before Statistics (BS) 
and After Statistics (AS). The BS stuff doesn’t work. 

(I’m paraphrasing)



Uncertainty
General situation:

• Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor readings or 
symptoms)

• Unobserved variables: Agent needs to reason about other 
aspects (e.g. where an object is or what disease is present)

• Model: Agent knows something about how the known 
variables relate to the unknown variables

Probabilistic reasoning gives us a framework for managing 
our beliefs and knowledge



Example (&hw 4 preview!): “ghostbusters”
• A ghost is in the grid somewhere
• Sensor readings tell how close a square is to the ghost
- On the ghost: probably red
- 1 or 2 away: probably orange
- 3 or 4 away: probably yellow
- 5+ away: probably green

• Goal is to find the ghost!

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

Sensors are noisy, but we know P(Color | Distance)



Random variables
A random variable is some aspect of the world about which we 
(may) have uncertainty

• R = Is it raining?
• T = Is it hot or cold?
• D = How long will it take to drive to work?
• L = Where is the ghost?

We denote random variables with capital letters

Like variables in a CSP, random variables have domains

• R in {true, false}   (often write as {+r, -r})
• T in {hot, cold}
• D in [0, ¥)
• L in possible locations, maybe {(0,0), (0,1), …}



Probability distributions
Associate a probability with each value

Temperature

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Weather 



Shorthand notation:
Unobserved random variables have distributions

A (discrete) distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number

Note that:                                             and

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Probability distributions



Joint distributions
A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

Must obey:

Size of distribution if n variables with domain sizes d?
• For all but the smallest distributions, this is impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Probabilistic models v CSPs
A probabilistic model is a joint distribution over 
a set of random variables

Probabilistic models:
• (Random) variables with domains 
• Assignments are called outcomes
• Joint distributions: say whether assignments 

(outcomes) are likely
• Normalized: sum to 1.0
• Ideally: only certain variables directly interact

Constraint satisfaction problems:
• Variables with domains
• Constraints: state whether assignments are 

possible
• Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun T
hot rain F
cold sun F
cold rain T

Distribution over T,W

Constraint over T,W



Events
An event is a set E of outcomes

From a joint distribution, we can calculate the 
probability of any event

• Probability that it’s hot AND sunny?

• Probability that it’s hot?

• Probability that it’s hot OR sunny?

Typically, the events we care about are partial 
assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Quiz: events
• P(+x, +y) ?

• P(+x) ?

• P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Quiz: events
• P(+x, +y) ? 

• P(+x) ?

• P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

.2

.5

.6



Marginal distributions
• Marginal distributions are sub-tables which eliminate variables 
• Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Quiz: Marginal distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x
-x

Y P
+y
-y



Conditional probabilities
A simple relation between joint and conditional probabilities

• In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)



Credit:		http://oscarbonilla.com/2009/05/visualizing-bayes-theorem/









Conditional probabilities
A simple relation between joint and conditional probabilities

• In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: conditional probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

• P(+x | +y) ?

• P(+y | +x) ?

• P(-y | +x) ?



Conditional distributions
Conditional distributions are probability distributions over some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution



Normalization trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6



Select the joint 
probabilities 
matching the 

evidence
T W P

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

Normalize the selection
(make it sum to one)

Normalization trick



Select the joint 
probabilities 
matching the 

evidence
T W P

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

Normalize the selection
(make it sum to one)

Normalization trick

Why does this work? Sum of selection is P(evidence)!  (P(T=c), here)



Quiz: normalization trick

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

P(X | Y=-y) ?

Select the joint 
probabilities 
matching the 

evidence

Normalize the selection
(make it sum to one)



(Dictionary) To bring or restore to a normal condition

Procedure:
• Step 1: Compute Z = sum over all entries
• Step 2: Divide every entry by Z

Example 1

To normalize

All entries sum to 1

W P
sun 0.2
rain 0.3 Z = 0.5

W P
sun 0.4
rain 0.6

Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

Z = 50

Normalize
T W P

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Probabilistic inference
Probabilistic inference: compute a desired probability from 
other known probabilities (e.g. conditional from joint)

We generally compute conditional probabilities 
• P(on time | no reported accidents) = 0.90
• These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
• P(on time | no accidents, 5 a.m.) = 0.95
• P(on time | no accidents, 5 a.m., raining) = 0.80
• Observing new evidence causes beliefs to be updated



Inference by enumeration
General case:

• Evidence variables: 
• Query* variable:
• Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

We want:

Step 1: Select the 
entries consistent with 
the evidence

Step 2: Sum out H to get joint of 
Query and evidence

Step 3: Normalize

⇥ 1

Z



• P(W)?

• P(W | winter)?

• P(W | winter, hot)?

S T W P
summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

Inference by enumeration



Sometimes have conditional distributions but want the joint

The product rule



Example:

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

D W P
wet sun 0.08
dry sun 0.72
wet rain 0.14
dry rain 0.06

The product rule



The chain rule
More generally, can always write any joint distribution as an 
incremental product of conditional distributions



Bayes rule



Bayes’ rule
Two ways to factor a joint distribution over two variables:

Dividing, we get:

Why is this at all helpful?
• Lets us build one conditional from its reverse
• Often one conditional is tricky but the other one is simple
• Foundation of many systems we’ll see later (e.g. ASR, MT)

In the running for most important AI equation!

That’s my rule!





Inference with Bayes’ Rule
Example: Diagnostic probability from causal probability:

Example:
• M: meningitis, S: stiff neck

• Note: posterior probability of meningitis still very small

Example
givens

P (+s|�m) = 0.01

P (+m|+ s) =
P (+s|+m)P (+m)

P (+s)
=

P (+s|+m)P (+m)

P (+s|+m)P (+m) + P (+s|�m)P (�m)
=

0.8⇥ 0.0001

0.8⇥ 0.0001 + 0.01⇥ 0.9999
= 0.007937

P (+m) = 0.0001
P (+s|+m) = 0.8

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)



Quiz: Bayes’ Rule

Given:

What is P(W | dry) ? 

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3



Drug testing example

• Assume 0.4% of the Mass population uses marijuana 

• Drug test: 99% true positive results for drug users; 99% true negative 
results for non-users

• If a randomly selected individual is tested positive, what is the probability 
he or she is actually a user?



Class"Example:"Drug"Test"
•  0.4%"of"the"Rhode"Island"popula3on"use"Marijuana*""

•  Drug"Test:"The"test"will"produce"99%"true"posi3ve"results"for"
drug"users"and"99%"true"nega3ve"results"for"nonddrug"users."

"

If"a"randomly"selected"individual"is"tested"posi3ve,"what"is"the"
probability"he"or"she"is"a"user?"

P User +( ) = P +User( )P User( )
P +( )

=
P +User( )P User( )

P +User( )P User( ) + P + !User( )P !User( )

= 0.99 × 0.004
0.99 × 0.004 + 0.01× 0.996

= 28.4%

Drug testing example



Brief aside; some “gotchas”



Monty hall



Simpson’s paradox

• When a relationship is reversed at a higher level of data 
aggregation compared with the lower level



An example

credit: http://vudlab.com/simpsons/

In 1973, the University of California-Berkeley was sued for sex discrimination: they 
had accepted 44% of male applicants and only 35% of female applicants.  



But…

It turns out women were applying to more competitive programs!
• See http://vudlab.com/simpsons/



Holy wars: Bayesians v Frequentists

• Frequentists believe underlying parameters (e.g., μ) are fixed. This is the world of p-
values. 

• Bayesians think of parameters as random variables – so μ is an RV following some 
distribution.



The Bayesian approach

• Taking the Bayesian approach, we incorporate prior knowledge, wherever it may 
come from, into inference.

• Let’s go back to coin flipping



Coin flipping re-visited

• Suppose we have two observed coin flips, both heads. The standard frequentist
(ML) estimate would say p = 0.0. This seems extreme, no?

• In the Bayesian world, we’ll instead factor in our prior knowledge, specifically 
through a prior distribution on p



The Beta-Bernoulli



Uninformative prior – Beta(1,1)



Informative prior -- Beta(5,5)





That’s it for today!

• Next time: Markov models!

• HWs due next Sunday


