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Reinforcement leaming

Still assume an underlying Markov decision process (MDP) — we just don’t know the
parameters!:

« Asetofstatess e S

» A set of actions (per state) A

« Amodel T(s,a,s)

* A reward function R(s,a,s’)

And we’re still looking for a policy =(s)

New twist: don’t know T or R
« S0 we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based Unknown MDP: Model-Free
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Goal Technique Goal Technique
Compute V*, Q*, * VI/PI on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning
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Model-rFree Leamning

: : S
Model-free (temporal difference) learning _
» Experience world through episodes
S, a
/ / / // /! /! /117
(s,a,r,s,a ,r', s" a" r" s"...) r
A\ S
» Update estimates each transition 5
/
(87 a? T78 ) S) al
« Over time, updates will mimic Bellman updates
AS))



| ast tme:

emporal Difference Leaming |

Big idea: learn from every experience!
» Update V(s) each time we experience a transition (s, a, s’, 1)
» Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
» Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s):

Update to V(s):

Can rewrite as:

sample = R(s,7(s),s") +~4V™(s)

VT(s) + (1 —a)V"™(s) 4+ (a)sample

V7T(s) + V™(s) + a(sample — V™ (s))



Problems with TD value leaming

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with
running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + ny(s’)}

|dea: learn Q-values, not values o
Makes action selection model-free too!




Active reinforcement leaming




Active reinforcement learning

Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
« Goal: learn the optimal policy / values

In this case:
* Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

» This is NOT offline planning! You actually take actions in the world and find out what
happens... May mean diving into a pit!




Q)-value iteration v. value iteration

Value iteration: find successive (depth-limited) values
o Start with V,(s) = 0, which we know is right
» Given V,, calculate the depth k+1 values for all states:

Viet1(s) < maaXZT(s, a,s) {R(s,a, s + nyk(s’)}

But Q-values are more useful and are just averages! So compute them instead
 Start with Qy(s,a) = 0, which we know is right
« Given Qy, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.a,5) +7 maxQy(s',a)

S



Q-Leamning

Q-Learning: sample-based Q-value iteration
Qit1(s,0) - Y T(s,0,5) |R(s,a,5) +7 maxQy(s',a)
/ a

S
ldea: Learn Q(s,a) values as you go

Receive a sample (s,a,s’,r) v vv
Consider your old estimate: Q(s, a) }4}4 1.00
Consider your new sample estimate: AAA
sample = R(s,a,s’) +~ max Q(s',ad") }v N.}v |4 oy
Incorporate the new estimate into a running average: vvv
Q(s,a) — (1 - a)Q(s,a) + (@) [sample] MMM

“Temporal diﬁerence” Q-VALUES AFTER 1000 EPISODES




Q-Leamning properties

Q-learning converges to optimal policy -- even if you’re acting suboptimally!

Caveats:
 You have to explore enough
* You have to eventually make the learning rate
small enough
... but not decrease it too quickly
« Basically, in the limit, it doesn’t matter how you select actions (!)



—xploration vs. exploitation
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How to explore”

Several schemes for forcing exploration

« Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability €, act randomly
- With (large) probability 1-g, act on current policy

* Problems with random actions”?

- You do eventually explore the space, but keep thrashing around
once learning is done

- One solution: lower € over time
- Another solution: exploration functions




—xploration functions

When to explore?
« Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function
» Takes a value estimate u and a visit count n, and returns an opti

utiity, 9. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) < R(s,a,s") +~ max Q(s',a")

Modified Q-Update:  Q(s,a) <a R(s,a,s") +ymax f(Q(s',a"), N(s',a))
a



Regret

* Even if you learn the optimal policy, you still make mistakes
along the way!

« Regret is a measure of your total mistake cost: the difference
between your (expected) rewards, including youthful
suboptimality, and optimal (expected) rewards

« Minimizing regret goes beyond learning to be optimal — it
requires optimally learning to be optimal

« Example: random exploration and exploration functions both
end up optimal, but random exploration has higher regret




Approximate Q-Leaming




Generalizing across states

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

« Too many states to visit them all in training

* Too many states to hold the g-tables in memory

Instead, we want to generalize:

» Learn about some small number of training states from
experience

» (Generalize that experience to new, similar situations

« This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]



—xample: Pacman

Let's say we discover In naive g-learning, we know Or even this one!

through experience that nothing about this state:
this state is bad:




—Nter machine learning

Agent Testing
75&09!




Feature-based representations

|dea: describe a state using a vector of features (properties)

» Features are functions from states to real numbers (often 0/1) that
capture important properties of the state

« Example features:
- Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- 1/ (dist to dot)?
- Is Pacman in a tunnel? (0/1)
- e etc.
- |s it the exact state on this slide?

« (Can also describe a g-state (s, a) with features (e.g. action moves
closer to food)




L Inear value tunctions

Using a feature representation, we can write a g function (or value function) for any state using a
few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(Sa CL) — wlfl(sa (l)—'—flUQfQ(S, a’)+ . °+wnf’n(37 a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning
Qsa) = wifi(s,a)Funfa(s, )t Awnfalsia)

Q-learming with linear Q-functions:
transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + «a[difference] Exact Qs

w; <+ w; + « [difference] f;(s,a)  Approximate Qs




Approximate Q-Learning
Qsa) = wifi(s,a)Funfa(s, )t Awnfalsia)

Q-learmning with linear Q-functions:
transition = (s,a,r,s’)
difference = [r + 7 max Qs a’)] _ Q(s.a)
Q(s,a) +— Q(s,a) + «[difference] Exact Q's

w; <+ w; + « [difference] f;(s,a)  Approximate Qs

Intuitive interpretation:
« Adjust weights of active features

« £.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Formal justification: online least squares (will revisit in a moment!)



—xample: Q-Pacman
Q(Sa Cl,) — 4'OfDOT(S7 CI,) — 1°OfGST(87 CL)

A -
fpor(s, NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s,NORTH) = 1.0
/ -
Q(S,NORTH) = +1 Q(S,,-) —0

r+~ymaxQ(s’,a') = —-500+40
CL,
4.0 —501]0.5
difference = —501 y “DOT T tal |
wast +— —1.04+ a[-501] 1.0

Q(Sa a’) — 3°OfDOT(87 CL) — 3°OfGST(87 CL)




Formal justification: Q-Leaming and least
squares




Linear approximation: regression

40r

20

f1(x)

Prediction: Prediction:

y = wo + wi f1(x) g = wo + w1 f1(x) + wafo(x)



Optimization: least sguares®

1

2
total error =Y (y; — §:)° =3 (yz - Zwkfk:(%')>
- k

Observation y

Prediction :/y\

° f1(x) :



Minimizing error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(w)>
k

0 error(w)

OWwm,

- (y - Z’%fk(@) fm(x)
k

W, +— Wm + (y — Zwkfk(fb‘)> fm(z)
k

Approximate g update explained:
W, < Wm + & {7“ + max Q(s,a") — Q(s, a)} fm(s,a)

“target” “prediction”



Let’s think about Q-learming for Sk




L et’s think about Q-learing for Sk

Assume S = {punch, block, move left, move right}. SO want to learn something like:

Q(s, punch) = w; - fi(s, punch) + ... + w, - (s, punch)

« What are some features we might use here?



L et’s think about Q-learing for Sk

Assume S = {punch, block, move left, move right}. SO want to learn something like:

Q(s, punch) = w; - fi(s, punch) + ... + w, - (s, punch)

« What are some features we might use here?

« What would we expect their values to look like (direction / order of magnitude)?



Policy search




Policy search

Note: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V' / Q best

» Q-learning’s priority: get Q-values close (modeling)
 Action selection priority: get ordering of Q-values right (prediction)
« We'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights



Policy search

Simplest policy search:
« Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

Problems:
» How do we tell the policy got better?
* Need to run many sample episodes!
 |f there are a lot of features, this can be impractical



Policy search: stochastic policy

7‘(‘9(3’ CL) — QQQ(Sva)/ Z 6@9(870’/)

This is a “softmax” function; we'll see it again!



Policy search: REINFORC

This is an unbiased estimate of the policy gradient




https://www.youtube.com/watch?v=0J.04JJjocc




Conclusion

We’re done with Part I: Search and Planning!

We've seen how Al methods can solve problems in:
« Search
« Constraint Satisfaction Problems
« Games
» Markov Decision Problems
» Reinforcement Learning

Next up: Part Il: Uncertainty and Learning!




