
Reinforcement learning II

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein



Still assume an underlying Markov decision process (MDP) – we just don’t know the 
parameters!:

• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

And we’re still looking for a policy p(s)

New twist: don’t know T or R
• So we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

Reinforcement learning



The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute	V*,	Q*,	p* Value	/	policy	iteration

Evaluate	a	fixed	policy	p Policy	evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique

Compute	V*,	Q*,	p* VI/PI	on	approx.	MDP

Evaluate	a	fixed	policy	p PE	on	approx.	MDP

Goal Technique

Compute	V*,	Q*,	p* Q-learning

Evaluate	a	fixed	policy	p Value	Learning



The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute	V*,	Q*,	p* Value	/	policy	iteration

Evaluate	a	fixed	policy	p Policy	evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique

Compute	V*,	Q*,	p* VI/PI	on	approx.	MDP

Evaluate	a	fixed	policy	p PE	on	approx.	MDP

Goal Technique

Compute	V*,	Q*,	p* Q-learning

Evaluate	a	fixed	policy	p Value	Learning



Model-Free Learning
Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman updates

r

a
s

s,	a

s’
a’

s’,	a’

s’’



Last time: Temporal Difference Learning (TDL)
Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s,	p(s)

s’

Sample of V(s):

Update to V(s):

Can rewrite as:



Problems with TD value learning
• TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with 

running sample averages
• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s,	a

s,a,s’
s’



Active reinforcement learning



Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find out what 

happens… May mean diving into a pit!

Active reinforcement learning



Q-value iteration v. value iteration
Value iteration: find successive (depth-limited) values

• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

But Q-values are more useful and are just averages! So compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning
Q-Learning: sample-based Q-value iteration

Idea: Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

“Temporal difference”



Q-Learning properties
Q-learning converges to optimal policy -- even if you’re acting suboptimally!

Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration vs. exploitation



How to explore?
Several schemes for forcing exploration

• Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability e, act randomly
- With (large) probability 1-e, act on current policy

• Problems with random actions?
- You do eventually explore the space, but keep thrashing around 

once learning is done
- One solution: lower e over time
- Another solution: exploration functions



Exploration functions
When to explore?

• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

Exploration function
• Takes a value estimate u and a visit count n, and returns an optimistic 

utility, e.g.

Modified Q-Update:

Regular Q-Update:



Regret
• Even if you learn the optimal policy, you still make mistakes 

along the way!
• Regret is a measure of your total mistake cost: the difference 

between your (expected) rewards, including youthful 
suboptimality, and optimal (expected) rewards

• Minimizing regret goes beyond learning to be optimal – it 
requires optimally learning to be optimal

• Example: random exploration and exploration functions both 
end up optimal, but random exploration has higher regret



Approximate Q-Learning



Generalizing across states
Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn 
about every single state!

• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

Instead, we want to generalize:
• Learn about some small number of training states from 

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and 

we’ll see it over and over again

[demo	– RL	pacman]



Example: Pacman
Let’s say we discover 

through experience that 
this state is bad:

In naïve q-learning, we know 
nothing about this state:

Or even this one!



Enter machine learning



Feature-based representations
Idea: describe a state using a vector of features (properties)

• Features are functions from states to real numbers (often 0/1) that 
capture important properties of the state

• Example features:
- Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- 1 / (dist to dot)2
- Is Pacman in a tunnel? (0/1)
- …… etc.
- Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. action moves 
closer to food)



Linear value functions
Using a feature representation, we can write a q function (or value function) for any state using a 
few weights:

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

Q-learning with linear Q-functions:

Exact Q’s

Approximate Q’s



Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

Formal justification: online least squares (will revisit in a moment!)

Exact Q’s

Approximate Q’s



Example: Q-Pacman



Formal justification: Q-Learning and least 
squares



0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear approximation: regression

Prediction: Prediction:



Optimization: least squares*

0 20
0

Error	or	“residual”

Prediction

Observation



Minimizing error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”



Let’s think about Q-learning for SF



Assume S = {punch, block, move left, move right}. So want to learn something like:

• What are some features we might use here? 

Let’s think about Q-learning for SF



Assume S = {punch, block, move left, move right}. So want to learn something like:

• What are some features we might use here? 
• What would we expect their values to look like (direction / order of magnitude)?

Let’s think about Q-learning for SF



Policy search



Policy search

Note: often the feature-based policies that work well (win games, maximize utilities) 
aren’t the ones that approximate V / Q best

• Q-learning’s priority: get Q-values close (modeling)
• Action selection priority: get ordering of Q-values right (prediction)
• We’ll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better than before

Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

Policy search



Policy search: stochastic policy

848 Chapter 21. Reinforcement Learning

observable variables, then we can fix the structure of a dynamic Bayesian network and use the
EM algorithm to learn the parameters, as was described in Chapter 20. Inventing the hidden
variables and learning the model structure are still open problems. Some practical examples
are described in Section 21.6.

21.5 POLICY SEARCH

The final approach we will consider for reinforcement learning problems is called policy
search. In some ways, policy search is the simplest of all the methods in this chapter: thePOLICY SEARCH

idea is to keep twiddling the policy as long as its performance improves, then stop.
Let us begin with the policies themselves. Remember that a policy π is a function that

maps states to actions. We are interested primarily in parameterized representations of π that
have far fewer parameters than there are states in the state space (just as in the preceding
section). For example, we could represent π by a collection of parameterized Q-functions,
one for each action, and take the action with the highest predicted value:

π(s) = max
a

Q̂θ(s, a) . (21.14)

Each Q-function could be a linear function of the parameters θ, as in Equation (21.10),
or it could be a nonlinear function such as a neural network. Policy search will then ad-
just the parameters θ to improve the policy. Notice that if the policy is represented by Q-
functions, then policy search results in a process that learns Q-functions. This process is
not the same as Q-learning! In Q-learning with function approximation, the algorithm finds
a value of θ such that Q̂θ is “close” to Q

∗, the optimal Q-function. Policy search, on the
other hand, finds a value of θ that results in good performance; the values found by the two
methods may differ very substantially. (For example, the approximate Q-function defined
by Q̂θ(s, a)= Q

∗(s, a)/10 gives optimal performance, even though it is not at all close to
Q

∗.) Another clear instance of the difference is the case where π(s) is calculated using, say,
depth-10 look-ahead search with an approximate utility function Ûθ. A value of θ that gives
good results may be a long way from making Ûθ resemble the true utility function.

One problem with policy representations of the kind given in Equation (21.14) is that
the policy is a discontinuous function of the parameters when the actions are discrete. (For a
continuous action space, the policy can be a smooth function of the parameters.) That is, there
will be values of θ such that an infinitesimal change in θ causes the policy to switch from one
action to another. This means that the value of the policy may also change discontinuously,
which makes gradient-based search difficult. For this reason, policy search methods often use
a stochastic policy representation πθ(s, a), which specifies the probability of selecting actionSTOCHASTIC POLICY

a in state s. One popular representation is the softmax function:SOFTMAX FUNCTION

πθ(s, a) = e
Q̂θ(s,a)

/

∑

a′

e
Q̂θ(s,a′)

.

Softmax becomes nearly deterministic if one action is much better than the others, but it
always gives a differentiable function of θ; hence, the value of the policy (which depends in

This is a “softmax” function; we’ll see it again!



Section 21.5. Policy Search 849

a continuous fashion on the action selection probabilities) is a differentiable function of θ.
Softmax is a generalization of the logistic function (page 725) to multiple variables.

Now let us look at methods for improving the policy. We start with the simplest case: a
deterministic policy and a deterministic environment. Let ρ(θ) be the policy value, i.e., thePOLICY VALUE

expected reward-to-go when πθ is executed. If we can derive an expression for ρ(θ) in closed
form, then we have a standard optimization problem, as described in Chapter 4. We can follow
the policy gradient vector ∇θρ(θ) provided ρ(θ) is differentiable. Alternatively, if ρ(θ) isPOLICY GRADIENT

not available in closed form, we can evaluate πθ simply by executing it and observing the
accumulated reward. We can follow the empirical gradient by hill climbing—i.e., evaluating
the change in policy value for small increments in each parameter. With the usual caveats,
this process will converge to a local optimum in policy space.

When the environment (or the policy) is stochastic, things get more difficult. Suppose
we are trying to do hill climbing, which requires comparing ρ(θ) and ρ(θ + ∆θ) for some
small ∆θ. The problem is that the total reward on each trial may vary widely, so estimates
of the policy value from a small number of trials will be quite unreliable; trying to compare
two such estimates will be even more unreliable. One solution is simply to run lots of trials,
measuring the sample variance and using it to determine that enough trials have been run
to get a reliable indication of the direction of improvement for ρ(θ). Unfortunately, this is
impractical for many real problems where each trial may be expensive, time-consuming, and
perhaps even dangerous.

For the case of a stochastic policy πθ(s, a), it is possible to obtain an unbiased estimate
of the gradient at θ, ∇θρ(θ), directly from the results of trials executed at θ. For simplicity,
we will derive this estimate for the simple case of a nonsequential environment in which the
reward R(a) is obtained immediately after doing action a in the start state s0. In this case,
the policy value is just the expected value of the reward, and we have

∇θρ(θ) = ∇θ

∑

a

πθ(s0, a)R(a) =
∑

a

(∇θπθ(s0, a))R(a) .

Now we perform a simple trick so that this summation can be approximated by samples
generated from the probability distribution defined by πθ(s0, a). Suppose that we have N

trials in all and the action taken on the jth trial is aj . Then

∇θρ(θ) =
∑

a

πθ(s0, a) ·
(∇θπθ(s0, a))R(a)

πθ(s0, a)
≈

1

N

N∑

j =1

(∇θπθ(s0, aj))R(aj)

πθ(s0, aj)
.

Thus, the true gradient of the policy value is approximated by a sum of terms involving
the gradient of the action-selection probability in each trial. For the sequential case, this
generalizes to

∇θρ(θ) ≈
1

N

N∑

j = 1

(∇θπθ(s, aj))Rj(s)

πθ(s, aj)

for each state s visited, where aj is executed in s on the jth trial and Rj(s) is the total
reward received from state s onwards in the jth trial. The resulting algorithm is called
REINFORCE (Williams, 1992); it is usually much more effective than hill climbing using
lots of trials at each value of θ. It is still much slower than necessary, however.

Policy search: REINFORCE

This is an unbiased estimate of the policy gradient



https://www.youtube.com/watch?v=0JL04JJjocc



Conclusion
We’re done with Part I: Search and Planning!

We’ve seen how AI methods can solve problems in:
• Search
• Constraint Satisfaction Problems
• Games
• Markov Decision Problems
• Reinforcement Learning

Next up: Part II: Uncertainty and Learning!


