CS 4100 // artificial intelligence

INstructor: byron wallace

Reinforcement learning Il

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Reinforcement leaming

Still assume an underlying Markov decision process (MDP) — we just don’t know the
parameters!:

« Asetofstatess e S

» A set of actions (per state) A

« Amodel T(s,a,s)

* A reward function R(s,a,s’)

And we’re still looking for a policy =(s)

New twist: don’t know T or R
« S0 we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based Unknown MDP: Model-Free
| N g | O
Goal Technique Goal Technique
Compute V*, Q*, * VI/PI on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning

_ / _ /

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based Unknown MDP: Model-Free
| N g | O
Goal Technique Goal Technique
Compute V*, Q*, * VI/PI on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning

_ / _ /

Model-rFree Leamning

: : S
Model-free (temporal difference) learning _
» Experience world through episodes
S, a
/ / / // /! /! /117
(s,a,r,s,a ,r', s" a" r" s"...) r
A\ S
» Update estimates each transition 5
/
(87 a? T78) S) al
« Over time, updates will mimic Bellman updates
AS))

| ast tme:

emporal Difference Leaming |

Big idea: learn from every experience!
» Update V(s) each time we experience a transition (s, a, s’, 1)
» Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
» Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s):

Update to V(s):

Can rewrite as:

sample = R(s,7(s),s") +~4V™(s)

VT(s) + (1 —a)V"™(s) 4+ (a)sample

V7T(s) + V™(s) + a(sample — V™ (s))

Problems with TD value leaming

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with
running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + ny(s’)}

|dea: learn Q-values, not values o
Makes action selection model-free too!

Active reinforcement leaming

Active reinforcement learning

Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
« Goal: learn the optimal policy / values

In this case:
* Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

» This is NOT offline planning! You actually take actions in the world and find out what
happens... May mean diving into a pit!

Q)-value iteration v. value iteration

Value iteration: find successive (depth-limited) values
o Start with V,(s) = 0, which we know is right
» Given V,, calculate the depth k+1 values for all states:

Viet1(s) < maaXZT(s, a,s) {R(s,a, s + nyk(s’)}

But Q-values are more useful and are just averages! So compute them instead
 Start with Qy(s,a) = 0, which we know is right
« Given Qy, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.a,5) +7 maxQy(s',a)

S

Q-Leamning

Q-Learning: sample-based Q-value iteration
Qit1(s,0) - Y T(s,0,5) |R(s,a,5) +7 maxQy(s',a)
/ a

S
ldea: Learn Q(s,a) values as you go

Receive a sample (s,a,s’,r) v vv
Consider your old estimate: Q(s, a) }4}4 1.00
Consider your new sample estimate: AAA
sample = R(s,a,s’) +~ max Q(s',ad") }v N.}v |4 oy
Incorporate the new estimate into a running average: vvv
Q(s,a) — (1 - a)Q(s,a) + (@) [sample] MMM

“Temporal diﬁerence” Q-VALUES AFTER 1000 EPISODES

Q-Leamning properties

Q-learning converges to optimal policy -- even if you’re acting suboptimally!

Caveats:
 You have to explore enough
* You have to eventually make the learning rate
small enough
... but not decrease it too quickly
« Basically, in the limit, it doesn’t matter how you select actions (!)

—xploration vs. exploitation

b7 7

AND
Srennc!

L £T0
G2

How to explore”

Several schemes for forcing exploration

« Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability €, act randomly
- With (large) probability 1-g, act on current policy

* Problems with random actions”?

- You do eventually explore the space, but keep thrashing around
once learning is done

- One solution: lower € over time
- Another solution: exploration functions

—xploration functions

When to explore?
« Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function
» Takes a value estimate u and a visit count n, and returns an opti

utiity, 9. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) < R(s,a,s") +~ max Q(s',a")

Modified Q-Update: Q(s,a) <a R(s,a,s") +ymax f(Q(s',a"), N(s',a))
a

Regret

* Even if you learn the optimal policy, you still make mistakes
along the way!

« Regret is a measure of your total mistake cost: the difference
between your (expected) rewards, including youthful
suboptimality, and optimal (expected) rewards

« Minimizing regret goes beyond learning to be optimal — it
requires optimally learning to be optimal

« Example: random exploration and exploration functions both
end up optimal, but random exploration has higher regret

Approximate Q-Leaming

Generalizing across states

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

« Too many states to visit them all in training

* Too many states to hold the g-tables in memory

Instead, we want to generalize:

» Learn about some small number of training states from
experience

» (Generalize that experience to new, similar situations

« This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

—xample: Pacman

Let's say we discover In naive g-learning, we know Or even this one!

through experience that nothing about this state:
this state is bad:

—Nter machine learning

Agent Testing
75&09!

Feature-based representations

|dea: describe a state using a vector of features (properties)

» Features are functions from states to real numbers (often 0/1) that
capture important properties of the state

« Example features:
- Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- 1/ (dist to dot)?
- Is Pacman in a tunnel? (0/1)
- e etc.
- |s it the exact state on this slide?

« (Can also describe a g-state (s, a) with features (e.g. action moves
closer to food)

L Inear value tunctions

Using a feature representation, we can write a g function (or value function) for any state using a
few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(Sa CL) — wlfl(sa (l)—'—flUQfQ(S, a’)+ . °+wnf’n(37 a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning
Qsa) = wifi(s,a)Funfa(s,)t Awnfalsia)

Q-learming with linear Q-functions:
transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + «a[difference] Exact Qs

w; <+ w; + « [difference] f;(s,a) Approximate Qs

Approximate Q-Learning
Qsa) = wifi(s,a)Funfa(s,)t Awnfalsia)

Q-learmning with linear Q-functions:
transition = (s,a,r,s’)
difference = [r + 7 max Qs a’)] _ Q(s.a)
Q(s,a) +— Q(s,a) + «[difference] Exact Q's

w; <+ w; + « [difference] f;(s,a) Approximate Qs

Intuitive interpretation:
« Adjust weights of active features

« £.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Formal justification: online least squares (will revisit in a moment!)

—xample: Q-Pacman
Q(Sa Cl,) — 4'OfDOT(S7 CI,) — 1°OfGST(87 CL)

A -
fpor(s, NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s,NORTH) = 1.0
/ -
Q(S,NORTH) = +1 Q(S,,-) —0

r+~ymaxQ(s’,a') = —-500+40
CL,
4.0 —501]0.5
difference = —501 y “DOT T tal |
wast +— —1.04+ a[-501] 1.0

Q(Sa a’) — 3°OfDOT(87 CL) — 3°OfGST(87 CL)

Formal justification: Q-Leaming and least
squares

Linear approximation: regression

40r

20

f1(x)

Prediction: Prediction:

y = wo + wi f1(x) g = wo + w1 f1(x) + wafo(x)

Optimization: least sguares®

1

2
total error =Y (y; — §:)° =3 (yz - Zwkfk:(%')>
- k

Observation y

Prediction :/y\

° f1(x) :

Minimizing error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(w)>
k

0 error(w)

OWwm,

- (y - Z’%fk(@) fm(x)
k

W, +— Wm + (y — Zwkfk(fb‘)> fm(z)
k

Approximate g update explained:
W, < Wm + & {7“ + max Q(s,a") — Q(s, a)} fm(s,a)

“target” “prediction”

Let’s think about Q-learming for Sk

L et’s think about Q-learing for Sk

Assume S = {punch, block, move left, move right}. SO want to learn something like:

Q(s, punch) = w; - fi(s, punch) + ... + w, - (s, punch)

« What are some features we might use here?

L et’s think about Q-learing for Sk

Assume S = {punch, block, move left, move right}. SO want to learn something like:

Q(s, punch) = w; - fi(s, punch) + ... + w, - (s, punch)

« What are some features we might use here?

« What would we expect their values to look like (direction / order of magnitude)?

Policy search

Policy search

Note: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V' / Q best

» Q-learning’s priority: get Q-values close (modeling)
 Action selection priority: get ordering of Q-values right (prediction)
« We'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy search

Simplest policy search:
« Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

Problems:
» How do we tell the policy got better?
* Need to run many sample episodes!
 |f there are a lot of features, this can be impractical

Policy search: stochastic policy

7‘(‘9(3’ CL) — QQQ(Sva)/ Z 6@9(870’/)

This is a “softmax” function; we'll see it again!

Policy search: REINFORC

This is an unbiased estimate of the policy gradient

https://www.youtube.com/watch?v=0J.04JJjocc

Conclusion

We’re done with Part I: Search and Planning!

We've seen how Al methods can solve problems in:
« Search
« Constraint Satisfaction Problems
« Games
» Markov Decision Problems
» Reinforcement Learning

Next up: Part Il: Uncertainty and Learning!

