
Reinforcement learning

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

• Thank you to everyone who took the time to complete the survey!

• Overall, the feedback was reasonably positive (selection bias?)

• But, I do want to be as responsive as possible, so, a few adjustments…

A note on the early feedback

A few folks noted that PacMan HWs felt detached from course content

- These are meant to be complementary to the lectures by having you actually work with the
models; I realize this is a lot of programming, but.. This is an upper-level CS class!

- Some of you loved the HWs!

- Still, there was a demand for perhaps more written HWs. Thus: I am going to scale back the
programming components a bit and scale up the written components. Don’t worry,
PacMan is not going away entirely!

On the programming HWs

• I will try to post slides immediately before class, so that you may follow along and
take notes (this was a request)

• I will also try to post solutions to in-class exercises – another request – and have
done so for the value iteration exercise already

Other miscalleany

Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: aState: s
Reward: r

Reinforcement learning

Mario

https://www.youtube.com/watch?v=N3L-lZ1XIfc&list=PL5nBAYUyJTrM48dViibyi68urttMlUv7e&index=19

• Learn to map situations to actions
• The fundamental trade-off: exploration (what don’t we know about our

environment?) vs. exploitation (how to exploit what we do know)

Reinforcement learning

Still assume an underlying Markov decision process (MDP) – we just don’t know the
parameters!:

• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

And we’re still looking for a policy p(s)

New twist: don’t know T or R
• So we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

Reinforcement learning

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-based learning

Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

Step 2: Solve the learned MDP
• For example, use value iteration, as before

Model-based learning

Example: model-based learning
Input policy p

Assume:	g =	1

Observed episodes (training) Learned model

A

B C D

E

B,	east,	C,	-1
C,	east,	D,	-1
D,	exit,		x,	+10

B,	east,	C,	-1
C,	east,	D,	-1
D,	exit,		x,	+10

E,	north,	C,	-1
C,	east,			A,	-1
A,	exit,				x,	-10

Episode 1 Episode 2

Episode 3 Episode 4

E,	north,	C,	-1
C,	east,			D,	-1
D,	exit,				x,	+10

T(s,a,s’).
T(B,	east,	C)	=	1.00
T(C,	east,	D)	=	0.75
T(C,	east,	A)	=	0.25

…

R(s,a,s’).
R(B,	east,	C)	=	-1
R(C,	east,	D)	=	-1
R(D,	exit,	x)	=	+10

…

Example: expected age
Goal: Compute expected age of cs4100 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear

with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Passive reinforcement learning

Simplified task: policy evaluation
• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.

Passive reinforcement learning

Direct evaluation
Goal: Compute values for each state under p

Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the sum of

discounted rewards turned out to be
• Average those samples

This is called direct evaluation

Example: direct evaluation
Input Policy p

Assume:	g =	1

Observed Episodes (Training) Output Values

A

B C D

E

B,	east,	C,	-1
C,	east,	D,	-1
D,	exit,		x,	+10

B,	east,	C,	-1
C,	east,	D,	-1
D,	exit,		x,	+10

E,	north,	C,	-1
C,	east,			A,	-1
A,	exit,				x,	-10

Episode	1 Episode	2

Episode	3 Episode	4
E,	north,	C,	-1
C,	east,			D,	-1
D,	exit,				x,	+10

A

B C D

E

+8 +4 +10

-10

-2

Direct evaluation: pros and cons
What’s good about direct evaluation?

• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values, using just

sample transitions

What bad about it?
• It wastes information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why not use policy evaluation?
Simplified Bellman updates calculate V for a fixed policy:

• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s,	p(s)

s, p(s),s’
s’

Sample-based policy evaluation?
We want to improve our estimate of V by computing these averages:

Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s,	p(s)

'1s'2s '3s
s, p(s),s’

s'

Almost!		But	we	can’t	
rewind	time	to	get	sample	
after	sample	from	state	s.

Adaptive dynamic programming (ADP)

Idea: exploit problem constraints between utilities of states by learning the transition
model that connects them

{ {
Estimate these transition probabilities

Rewards will be observed

ADP is one means of incorporating Bellman eq.

• In ADP we (continuously re-)estimate the transition probabilities then estimate policy value
using one of the methods from last time

• There’s another way: Temporal Difference Learning (TDL)
• Idea is to adjust utility estimates at each step to align with Bellman equations

ADP is one means of incorporating Bellman eq.

• In ADP we (continuously re-)estimate the transition probabilities then estimate policy value
using one of the methods from last time

• There’s another way: Temporal Difference Learning (TDL)
• Idea is to adjust utility estimates at each step to align with Bellman equations

Sample-based (model-free) policy evaluation?
We want to improve our estimate of V by computing these averages:

Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s,	p(s)

'1s'2s '3s
s, p(s),s’

s'

Almost!		But	we	can’t	
rewind	time	to	get	sample	
after	sample	from	state	s.

Temporal Difference Learning (model free!)
Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s,	p(s)

s’

Sample of V(s):

Update to V(s):

Can rewrite as:

Example: temporal difference learning

Assume:	g =	1,	α =	1/2

Observed Transitions

B,	east,	C,	-2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C,	east,	D,	-2

A

B C D

E

States

In class exercise on TDL

Exponential moving average

• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Problems with TD value learning
• TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with

running sample averages
• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s,	a

s,a,s’
s’

Active reinforcement learning

Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find out what

happens… May mean diving into a pit!

Active reinforcement learning

Q-value iteration
Value iteration: find successive (depth-limited) values

• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

But Q-values are more useful and are just averages! So compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning
Q-Learning: sample-based Q-value iteration

Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

Exploration vs. exploitation

Exploration (or, the trouble with greed)
• Suppose we estimate model parameters at each step and then always acts optimally

according to current estimates

• This may backfire! Why?

How to explore?
Several schemes for forcing exploration

• Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability e, act randomly
- With (large) probability 1-e, act on current policy

• Problems with random actions?
- You do eventually explore the space, but keep thrashing around

once learning is done
- One solution: lower e over time
- Another solution: exploration functions

Exploration functions
When to explore?

• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

Exploration function
• Takes a value estimate u and a visit count n, and returns

an optimistic utility, e.g.

Modified Q-Update:

Regular Q-Update:

Q-Learning Properties
Q-learning converges to optimal policy -- even if you’re acting suboptimally!

Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

Next time

• More reinforcement learning!
• Homeworks (programming + written bit) due by Sunday midnight!

