CS 4100 // artificial intelligence

INstructor: byron wallace

@ Reinforcement learning

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

A note on the early feedback

* Thank you to everyone who took the time to complete the survey!
« QOverall, the feedback was reasonably positive (selection bias?)

« But, | do want to be as responsive as possible, so, a few adjustments...

On the programming HWs

A few folks noted that PacMan HWs felt detached from course content

- These are meant to be complementary to the lectures by having you actually work with the
models; | realize this is a lot of programming, but.. This is an upper-level CS class!

- Some of you loved the HWs!

- Still, there was a demand for perhaps more written HWSs. Thus: 1 am going to scale back the

programming components a bit and scale up the written components. Don’t worry,
PacMan is not going away entirely!

Other miscalleany

| will try to post slides immediately before class, so that you may follow along and
take notes (this was a request)

* | will also try to post solutions to in-class exercises — another request — and have
done so for the value iteration exercise already

Reinforcement leaming

Agent
State: s o
Reward: r Actions: a
Environment
Basic idea:

* Receive feedback in the form of rewards

« Agent’s utility is defined by the reward function

* Must (learn to) act so as to maximize expected rewards
« All learning is based on observed samples of outcomes!

\Vario

https://www.youtube.com/watch?v=N3L-I/1 Xlfc&list=PL5nBAYUyJ Ir'M48dViibyie8urtMIUv 7 e&index=19

Reinforcement leaming

» [earn to map situations to actions

» The fundamental trade-off: exploration (what don’t we know about our
environment?) vs. exploitation (how to exploit what we do know)

Reinforcement leaming

Still assume an underlying Markov decision process (MDP) — we just don’t know the
parameters!:
« Asetofstatess e S

» A set of actions (per state) A 6
 Amodel T(s,a,s’) | Q==

* A reward function R(s,a,s’)

Cool Overheated

And we’re still looking for a policy =(s)

New twist: don’t know T or R
« S0 we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

g

<

Offline Solution Online Learming

Moael-based leaming

Model-based leaming

Model-Based Idea;

* Learn an approximate model based on experiences
« Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
« Count outcomes s’ for each s, a
 Normalize to give an estimate of T'(s, a, s')
« Discover each R(s,a,s’)when we experience (s, a, s’) (!

Step 2: Solve the learned MDP
» For example, use value iteration, as before

—xample: model-based learning

Input policy Observed episodes (training) Learned model
Episode 1 Episode 2 T(s,a,s")
N O) 4 N
B, east, C, -1 B, east, C, -1 T(B, east, C) =1.00
C, east, D, -1 C, east, D, -1 igg 2:? 2; - 8;2
. D, exit, X, +10/ . D, exit, X, +10/ L ,
Episode 3 Episode 4 R(s,a,s")
4 N O) 4 _ N\
E, north, C, -1 E, north, C, -1 Ezg' easif g))- 1
,east, D) =-
Assume: =1 g’ cast, L, '110 2’ cast, A '110 R(D, exit, x) = +10
D exit, X, + LA exit, X, -) % ,

—xample: expected age

Goal: Compute expected age of ¢s4100 students

4 Known P(A) A
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a4, a,, ... a\]

/ Unknown P(A): “Model Based” / Unknown P(A): “Model Free” \
Why does this Pla) = num(a) Why does this
work”? Because N E[A] ~ 1 Z a0 work”? Because
eventually you . N Z, ’ samples appear
learn the right E[Al=) P(a)-a with the right

model. a / \ frequencies.

Passive reinforcement learning

- |
|3

—Ml%

Passive reinforcement learning

Simplified task: policy evaluation
 |nput: a fixed policy n(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
» Goal: learn the state values

In this case:
» Learner is “along for the ride”
« No choice about what actions to take
» Just execute the policy and learn from experience
» This is NOT offline planning! You actually take actions in the world.

Direct evaluation

Goal: Compute values for each state under «

|dea: Average together observed sample values
« Act accordingto w

* Every time you visit a state, write down what the sum of
discounted rewards turned out to be

* Average those samples

This is called direct evaluation

—xample: direct evaluation

Input Policy Observed Episodes (Training) Output Values

Episode 1 Episode 2

- B, east, C, -1 N B, east, C, -1 A
C, east, D, -1 C, east, D, -1

. D, exit, X, +1O) . D, exit, X, +1O)
Episode 3 Episode 4

g E, north, C, -1 N E, north, C, -1 A
C,east, D, -1 C, east, A, -1

Assume:y =1 D, exit, x, +10 b A exit, x,-10 b

- -

Direct evaluation: pros and cons

What’s good about direct evaluation? Output Values
* |t's easy to understand
|t doesn’t require any knowledge of T, R

|t eventually computes the correct average values, using just
sample transitions

What bad about it?

[t wastes information about state connections
* Each state must be learned separately
* S0, it takes a long time to learn

If B and E both go to C
under this policy, how can
their values be different?

VWhy not use policy evaluation”/

Simplified Bellman updates calculate V for a fixed policy:
» Each round, replace V with a one-step-look-ahead layer over V

Vo (s) =0 | 7(s)

Vi1 (s) < Y T(s,m(s),s)[R(s,m(s),) + V()] _simls)s’ \ ™
s/ A g’

» This approach fully exploited the connections between the states
» Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?
 In other words, how to we take a weighted average without knowing the weights?

Sample-based policy evaluation”?

We want to improve our estimate of V by computing these averages:

Vig1(8) < > T(s,m(s), sH[R(s,7(s),s") + vV (s))]

S
[dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 3/1) -+ *kaW(s’l)

samples = R(s,m(s),s5) + YV (s5) -.2

samplen = R(s,7(s), s,,) + Vi (s7,) |

1
Vid 1(8) + -) sample;
()

Adaptive dynamic programming (ADP)

ldea: exploit problem constraints between utilities of states by learning the transition
model that connects them

Viip1(s) < 3 T(s,m(s),) [R(s, (s),8") + 1V ()]

S
Sy)
M \
j Rewards will be observed

Estimate these transition probabilities

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal 7’
persistent: 7, a fixed policy
mdp, an MDP with model P, rewards R, discount -y
U, a table of utilities, initially empty
Ngq, a table of frequencies for state—action pairs, initially zero
N/ |sq, a table of outcome frequencies given state—action pairs, initially zero
s, a, the previous state and action, initially null

if s’ is new then U[s'] < r’; R[s'] « 7’
if s 1s not null then
increment N,,[s, a] and Ns,|sa[s’, S, a]
for each ¢ such that N,/ |4,[%, s, a] is nonzero do
P(t|s,a)« Ny slt,s,a]l / Nsals,al
U < POLICY-EVALUATION(7, U, mdp)
if s TERMINAL? then s, a < null else s, a < s’, 7[s’]
return a

o
S

bl
o

¥ <« d
S o O

Amn ur 10119 SINY

—
()

-

80 100

60
Number of trials

40

20

(b)

ADP Is one means of incorporating Bellman eq.

* In ADP we (continuously re-)estimate the transition probabilities then estimate policy value
using one of the methods from last time

» There’s another way: Temporal Difference Learning (TDL)
 |dea is to adjust utility estimates at each step to align with Bellman equations

ADP Is one means of incorporating Bellman eq.

* In ADP we (continuously re-)estimate the transition probabilities then estimate policy value
using one of the methods from last time

» There’s another way: Temporal Difference Learning (TDL)
 |dea is to adjust utility estimates at each step to align with Bellman equations

U™(1,3) = —0.04 + U™ (2,3)

sample-pased (model-free) policy evaluation”?

We want to improve our estimate of V by computing these averages:

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s/)]

S

ldea: Take samples of outcomes s’ (by doing the action!) and average
sampler = R(s,m(s),s}) + *kaW(s’l)

samples = R(s,m(s), 8/2) -+ 7\/,{77(5/2)

samplen, = R(s,7(s),sy,) + YV (s},) |

1
Vig1(8) + -) sample;
1

emporal Difference Learning (model freel)

Big idea: learn from every experience!

» Update V(s) each time we experience a transition (s, a, s’, r) >
» Likely outcomes s’ will contribute updates more often Tt(s)
s, Tt(s)
Temporal difference learning of values
» Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average A S

Sample of V(s): sample = R(s,m(s),s") + V7 (s)

Updateto V(s): V7™ (s) + (1 —a)V7™(s) + (a)sample

Canrewriteas: V7 (s) < V™(s) 4+ a(sample — V7 (s))

—xample: temporal difference leaming

States Observed Transitions
[B, east, C, -2 } [C, east, D, -2 }

| o) ofole) [ado el [a)e e

Assume:y=1,a=1/2
V7(s) + (1 = a)V7(s) + a |R(s,m(s),s) +4V7(s))

N class exercise on 1D

—xponential moving average

» The running interpolation update: Z,, = (1 — @) - ZTp,—1 + @ - Ty,
* Makes recent samples more important:

Tp+(1—a) Tp1+1—a)? zpo+...

Lp =

1+ (1-0)+(1—a)?+...

» Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Problems with TD value leaming

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with
running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + ny(s’)}

|dea: learn Q-values, not values o
Makes action selection model-free too!

Active reinforcement leaming

Active reinforcement learning

Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
« Goal: learn the optimal policy / values

In this case:
* Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

» This is NOT offline planning! You actually take actions in the world and find out what
happens... May mean diving into a pit!

(Q-value iteration

Value iteration: find successive (depth-limited) values
o Start with V,(s) = 0, which we know is right
» Given V,, calculate the depth k+1 values for all states:

Viet1(s) < maaXZT(s, a,s) {R(s,a, s + nyk(s’)}

But Q-values are more useful and are just averages! So compute them instead
 Start with Qy(s,a) = 0, which we know is right
« Given Qy, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.a,5) +7 maxQy(s',a)

S

Q-Leamning

Q-Learning: sample-based Q-value iteration
Qit1(s,0) - Y T(s,0,5) |R(s,a,5) +7 maxQy(s',a)
/ a

S
Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,1)

« Consider your old estimate: Q(s,a) >i4>i4i 1.00

» Consider your new sample estimate: AAA
sample = R(s,a,s’) +~ max Q(s',a") >i<.>i4 1,00

* Incorporate the new estimate into a running average: WWW
Q(s,a) — (1 -)Q(s,a) + (a) [sample] AN ZAANVANVAN

Q-VALUES AFTER 1000 EPISODES

—xploration vs. exploitation

b7 7

AND
Srennc!

L £T0
G2

—xploration (or, the trouble with greed)

« Suppose we estimate model parameters at each step and then always acts optimally
according to current estimates

» This may backfire! Why?

How to explore”

Several schemes for forcing exploration

« Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability €, act randomly
- With (large) probability 1-g, act on current policy

* Problems with random actions”?

- You do eventually explore the space, but keep thrashing around
once learning is done

- One solution: lower g over time
- Another solution: exploration functions

—xploration functions

When to explore?
« Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

* Takes a value estimate u and a visit count n, and returns
an optimistic utility, e.g.

f(u,n) =u+k/n
Regular Q-Update: Q(s,a) < R(s,a,s") +~ max Q(s',a")

Modified Q-Update: Q(s,a) <a R(s,a,s") +ymax f(Q(s',a"), N(s',a))
a

Q-Leaming Properties

Q-learning converges to optimal policy -- even if you’re acting suboptimally!

Caveats:
 You have to explore enough
* You have to eventually make the learning rate
small enough
... but not decrease it too quickly
« Basically, in the limit, it doesn’t matter how you select actions (!)

Next time

* More reinforcement learning!
« Homeworks (programming + written bit) due by Sunday midnight!

