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Last time: grid world
A maze-like problem

• The agent lives in a grid
• Walls block the agent’s path

Noisy movement: actions do not always go as planned
• 80% of the time, the action North takes the agent North 

(if there is no wall there)
• 10% of the time, North takes the agent West; 10% East
• If there is a wall in the direction the agent would have 

been taken, the agent stays put

The agent receives rewards each time step
• Small “living” reward each step (can be negative)
• Big rewards come at the end (good or bad)

Goal: maximize sum of rewards



Grid world is stochastic



Review: Markov Decision Processes (MDPs)
An MDP is defined by

• States Î S
• Actions a Î A
• Transition function T(s, a, s’)

Probability that a from s leads to s’, i.e., P(s’| s, a)
Also called the model or the dynamics

• Reward function R(s, a, s’) and discount g
Sometimes just R(s) or R(s’)

• Start state
• Maybe a terminal state

Quantities
• Policy = map of states to actions
• Utility = sum of discounted rewards
• Values = expected future utility from a state, under optimal action
• Q-Values = expected future utility from a q-state (chance node)
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Optimal quantities

The value (utility) of a state s
V*(s) = expected utility starting in s and acting optimally. Note: 

sometimes written as U(s)

The value (utility) of a q-state (s,a)
Q*(s,a) = expected utility starting out having taken action a 

from state s and (thereafter) acting optimally

The optimal policy
p*(s) = optimal action from state s
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Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

In deterministic single-agent search problems, we 
wanted an optimal plan, or sequence of actions, from 
start to a goal

For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• An optimal policy is one that maximizes expected utility 

if followed
• An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
• It computed the action for a single state only



Gridworld



Gridworld



Gridworld



The Bellman Equations

How	to	be	optimal:

Step	1:	Take	correct	first	action

Step	2:	Keep	being	optimal



Definition of “optimal utility” via expectimax recurrence gives a simple 
one-step lookahead relationship amongst optimal utility values

These are the Bellman equations, and they characterize optimal 
values in a way we’ll use over and over
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The Bellman Equations



Value iteration
Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just an iterative solution method
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Exercise from last time

Remember: calculate by adding the instantaneous reward at a state to the expected utility that 
will be achieved by the best possible following sequence of actions.



Policies



Policy evaluation

Need a means of evaluating a given policy



Fixed policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy p(s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed
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Do the optimal action Do what p says to do



Utilities for a fixed policy
• Basic operation: compute the utility of a state s under a fixed 

(generally non-optimal) policy

• Define the utility of a state s, under a fixed policy p
Vp(s) = expected total discounted rewards starting in s and following p

• Recursive relation (one-step look-ahead / Bellman equation):
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Example: policy evaluation
Always	Go	Right Always	Go	Forward



Always	Go	Right Always	Go	Forward

Example: policy evaluation



Policy evaluation
• How do we calculate the V’s for a fixed policy p?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration (we get to drop the a)

• Note that the maxes are gone, so the Bellman equations are just a linear system 
Could solve with Matlab (or your favorite linear system solver)
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Policy extraction



Computing actions from values

Let’s imagine we have the optimal values V*(s)

How should we act?
• It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values



Computing actions from Q-Values

Let’s imagine we have the optimal q-values:

How should we act?
• Completely trivial to decide!

The lesson: actions are easier to select from q-values than values!



Policy iteration



Problems with value Iteration
Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values
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k=0

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0
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k=100

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0



Problems with value Iteration
Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s,	a

s,a,s’
s’



Policy iteration
Alternative approach for optimal values:

• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until 
convergence

• Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged 
(but not optimal!) utilities as future values

• Repeat steps until policy converges

This is policy iteration
• It’s still optimal!
• Can converge (much) faster under some conditions



Evaluation: For fixed current policy p, find values with policy evaluation:
Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction
One-step look-ahead:

Policy iteration



Comparison
Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we consider only 

one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

Both are dynamic programs for solving (producing optimal values/policies) MDPs



Summary: MDP algorithms

So you want to….
• Compute optimal values: use value iteration or policy iteration
• Compute values for a particular policy: use policy evaluation
• Turn your values into a policy: use policy extraction (one-step lookahead)

Hey, these all look the same!
• They basically are – they are all variations of Bellman updates
• They all use one-step lookahead expectimax fragments
• They differ only in whether we plug in a fixed policy or max over actions



From MDPs to reinforcement learning…



Double bandits



• Actions: Blue, Red
• States: Win, Lose
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Double bandits



Offline planning
Solving MDPs is offline planning

• You determine all quantities through computation
• You need to know the details of the MDP
• You do not actually play the game!

Play Red

Play Blue

Value
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Let’s play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0



Online planning

Rules changed!  Red’s win chance is different.
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$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

Let’s play!



What just happened?
That wasn’t planning, it was learning!

• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP



Next time reinforcement learning

Remember: no class Tuesday -- work on HWs!


