CS 4100 // artificial intelligence

INstructor: byron wallace

Markov Decision Processes
(MDPs) I

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials

Thanks to John DeNero and Dan Klein

Last time: grid world

A maze-like problem
* The agent lives in a grid
« Walls block the agent’s path

Noisy movement: actions do not always go as planned

« 80% of the time, the action North takes the agent North
(if there is no wall there)

« 10% of the time, North takes the agent West; 10% East

« If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
« Small “living” reward each step (can be negative)
« Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid world is stochastic

Review: Markov Decision Processes (MDPs)

An MDP is defined by
o States € S
Actionsa € A
Transition function T(s, a, s’)

Probability that a from s leads to s’, i.e., P(s’| s, a)
Also called the model or the dynamics e
Reward function R(s, a, s’) and discount y

Sometimes just R(s) or R(s)
Start state
Maybe a terminal state

Quantities
» Policy = map of states to actions
o Utility = sum of discounted rewards
» Values = expected future utility from a state, under optimal action
« QQ-Values = expected future utility from a g-state (chance node)

Optimal quantities

The value (utility) of a state s

V'(s) = expected utility starting in s and acting optimally. Note:
sometimes written as U(s)

The value (utility) of a g-state (s,a)

Q'(s,a) = expected utility starting out having taken action a
from state s and (thereafter) acting optimally

The optimal policy

7 (S) = optimal action from state s

sis a
state

(s,a)is a
g-state

(s,a,s’)is a
transition

Policies

In deterministic single-agent search problems, we

wanted an optimal plan, or sequence of actions, from
start to a goal

For MDPs, we want an optimal policy n*: S > A
« A policy © gives an action for each state

« An optimal policy is one that maximizes expected utility
if followed

» An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

Expectimax didn’t compute entire policies
|t computed the action for a single state only

Gridworld

3 + 1
2 -1
1 START

1 4

0.1

0.8

(b)

0.1

Gridworld

3 0.812 0.868 0.918 +1

2 0.762 0.660 -1

1 0.705 0.655 0.611 0.388

1 2 3 4

Figure 17.3 The utilities of the states in the 4 x 3 world, calculated with =1 and
R(s) = — 0.04 for nonterminal states.

Gridworld

1 2 3 4

Figure 17.3 The utilities of the states in the 4 x 3 world, calculated with y=1 and
R(s) = — 0.04 for nonterminal states.

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2fKeep being optimal

A~
o
7

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

V*(s) = maxQ*(s, a)

Q*(s,a) = ZT(S, a,s') {R(s, a,s’) + ’)/V*(S/)}

V*(s) = mC?XZT(s, a,s) {R(s,a, ") + ’VV*(S,)}

S

These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

Value Iteration

Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S,a,, s") {R(s,a, s") + ny*(s/)}

S

Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

S

Value iteration is just an iterative solution method

—xercise from last time

3 0.8
0.1 0.1
2 (=]
1 START
1 2 3 4

Figure 1: Exciting gridworld from the text (Figure 17.1). Assume R = —0.3
(i.e., the ‘living penalty’ is -0.3).

Remember: calculate by adding the instantaneous reward at a state to the expected utility that
will be achieved by the best possible following sequence of actions.

Policies

Policy evaluation

Need a means of evaluating a given policy

-Ixed policies

Do the optimal action Do what ©t says to do

“'s,a,s

7\A "A
A s A s

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy =(s), then the tree would be simpler — only one action per state
« ... though the tree’s value would depend on which policy we fixed

Utilities for a fixed policy

« Basic operation: compute the utility of a state s under a fixed
(generally non-optimal) policy

» Define the utility of a state s, under a fixed policy «
Vr(s) = expected total discounted rewards starting in s and following =

» Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,m(s),s") + V" (s)]

—xample: policy evaluation

Always Go Right Always Go Forward

—xample: policy evaluation

Always Go Right Always Go Forward

Policy evaluation

« How do we calculate the V’s for a fixed policy n”?

 |dea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vig1(8) < > T(s,7m(s), sH[R(s,m(s),s") + V()]

S/

« Efficiency: O(S?) per iteration (we get to drop the a)

* Note that the maxes are %one so the Bellman e at|ons are just a linear system
Could solve with Matlab (or your favorite linear system solver)

Policy extraction

Computing actions from values

Let’s imagine we have the optimal values V*(s)

How should we act?
* |t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = arg CrlnaXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing actions from Q-Values

Let’s imagine we have the optimal g-values: »&4»@4}@
How should we act? ‘ o ~1.00
« Completely trivial to decide! A A

The lesson: actions are easier to select from g-values than values!

Policy iteration

Problems with value Iteration

Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(s, a,s’) [R(s, a,s’) + ’)/Vk(S/)]

S

« Problem 1: It’s slow — O(S2A) per iteration A

* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values

K

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Cridworld Display

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

GCridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

GCridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Gridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Problems with value teration

Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(s, a,s’) [R(s, a,s’) + ’)/Vk(S/)]

S

« Problem 1: It’s slow — O(S2A) per iteration A

* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values

Policy iteration

Alternative approach for optimal values:

» Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until
convergence

» Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged
(but not optimall) utilities as future values

» Repeat steps until policy converges

This is policy iteration
* |t’s still optimal!
» Can converge (much) faster under some conditions

Policy iteration

Evaluation: For fixed current policy r, find values with policy evaluation:
lterate until values converge:

Vit 1 (s) < ZT(s mi(s),8') |R(s,mi(s),8") 4+~ Vi(s))]

Improvement: For fixed values, get a better policy using policy extraction
One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + vVﬁi(S/)}

Sl

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
» Every iteration updates both the values and (implicitly) the policy
« We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

» We do several passes that update utilities with fixed policy (each pass is fast because we consider only
one action, not all of them)

» After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
» The new policy will be better (or we’re done)

Both are dynamic programs for solving (producing optimal values/policies) MDPs

summary: MDP algorithms

So you want to....
« Compute optimal values: use value iteration or policy iteration
« Compute values for a particular policy: use policy evaluation
« Turn your values into a policy: use policy extraction (one-step lookahead)

Hey, these all look the same!
» They basically are — they are all variations of Bellman updates
» They all use one-step lookahead expectimax fragments
» They differ only in whether we plug in a fixed policy or max over actions

~rom MDPs to reinforcement leaming. ..

Double bandits

Double bandits

« Actions: Blue, Red 0.25 SO
o States: Win, Lose

-~

No discount
100 time steps

\

Both states have

the same value

Offline planning

4 N
Solving MDPs is offline planning No discount
 You determine all quantities through computation 100 time steps
* You need to know the details of the MDP Both states have
* You do not actually play the game! the same value

4 N\

Value

Play Red 150

Play Blue 100

_ /

Let's play!

S2 S2 SO0 S2 S2
$2 $2 SO0 SO SO

Online planning

Rules changed! Red’'s win chance is different.

Let's play!

SO SO SO $2 SO
$2 SO SO SO SO

VWhat just happened?

That wasn’t planning, it was learning!
» Specifically, reinforcement learning
* There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

Important ideas in reinforcement learning that came up
Exploration: you have to try unknown actions to get information
Exploitation: eventually, you have to use what you know

Regret: even if you learn intelligently, you make mistakes
Sampling: because of chance, you have to try things repeatedly
Difficulty: learning can be much harder than solving a known MDP

Next time reinforcement learming

Remember: no class luesday -- work on HWs!

