
CS 4100 // artificial intelligence

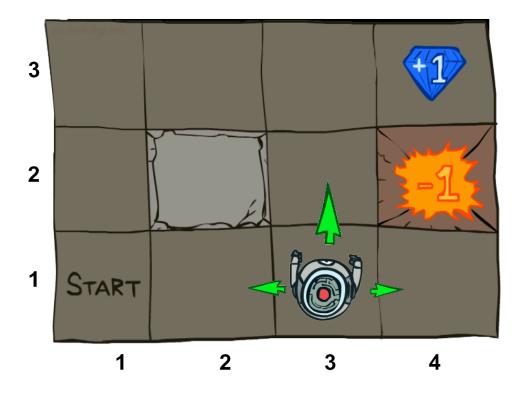
Markov Decision Processes (MDPs) II

Attribution: many of these slides are modified versions of those distributed with the <u>UC Berkeley CS188</u> materials Thanks to <u>John DeNero</u> and <u>Dan Klein</u>

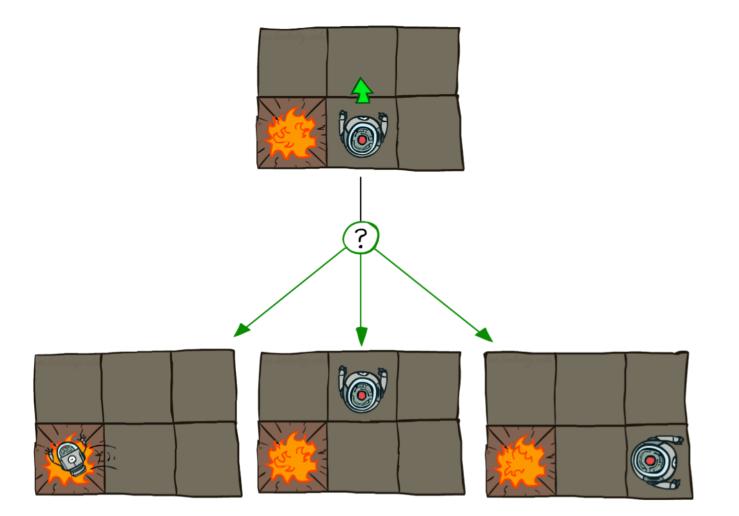
Last time: grid world

A maze-like problem

- The agent lives in a grid
- Walls block the agent's path


Noisy movement: actions do not always go as planned

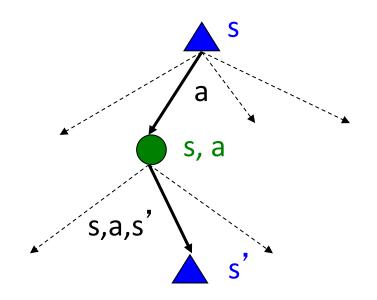
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put


The agent receives rewards each time step

- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid world is stochastic


Review: Markov Decision Processes (MDPs)

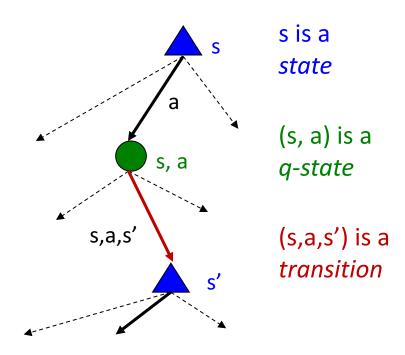
An MDP is defined by

- States $\in S$
- Actions $a \in A$
- Transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a) Also called the model or the dynamics
- Reward function R(s, a, s') and discount γ Sometimes just R(s) or R(s')
- Start state
- Maybe a terminal state

Quantities

- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = *expected* future utility from a state, under optimal action
- Q-Values = expected future utility from a q-state (chance node)

Optimal quantities


The value (utility) of a state s

V^{*}(s) = *expected utility* starting in s and acting optimally. Note: sometimes written as U(s)

The value (utility) of a q-state (s,a)

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

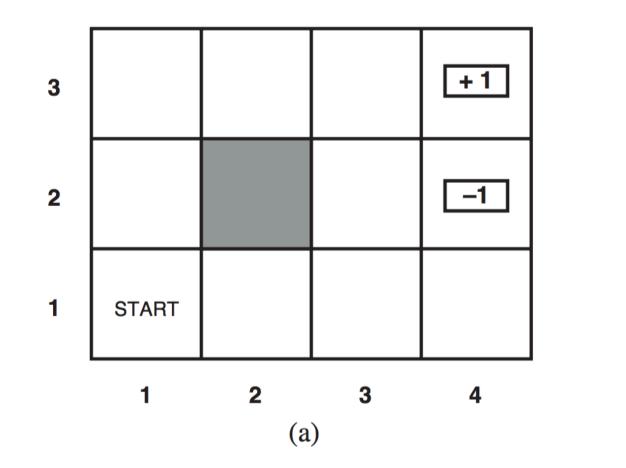
The optimal policy $\pi^*(s) = optimal action from state s$

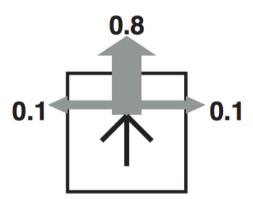
Policies


In deterministic single-agent search problems, we wanted an optimal **plan**, or sequence of actions, from start to a goal

For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent


Expectimax didn't compute entire policies


• It computed the action for a single state only

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Gridworld

(b)

Gridworld

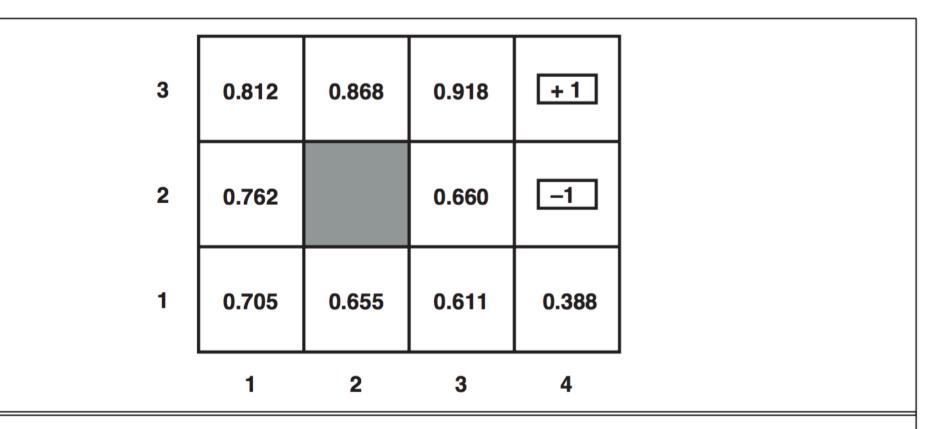


Figure 17.3 The utilities of the states in the 4×3 world, calculated with $\gamma = 1$ and R(s) = -0.04 for nonterminal states.

Gridworld

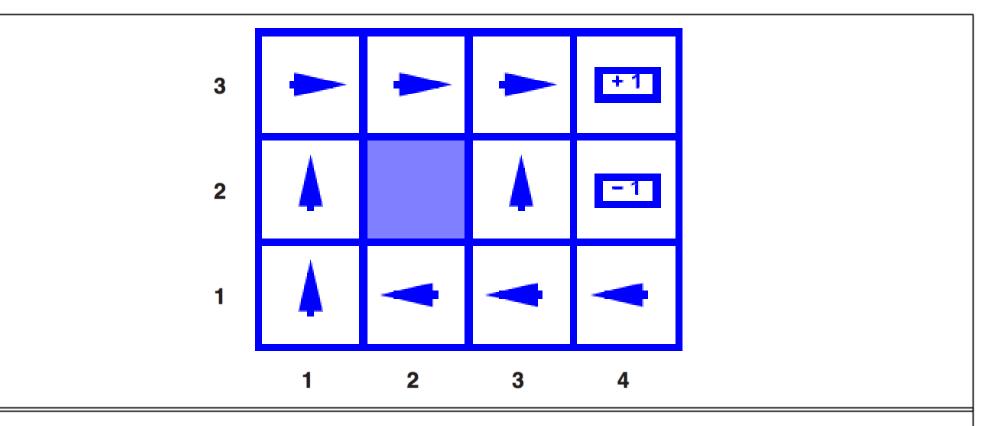
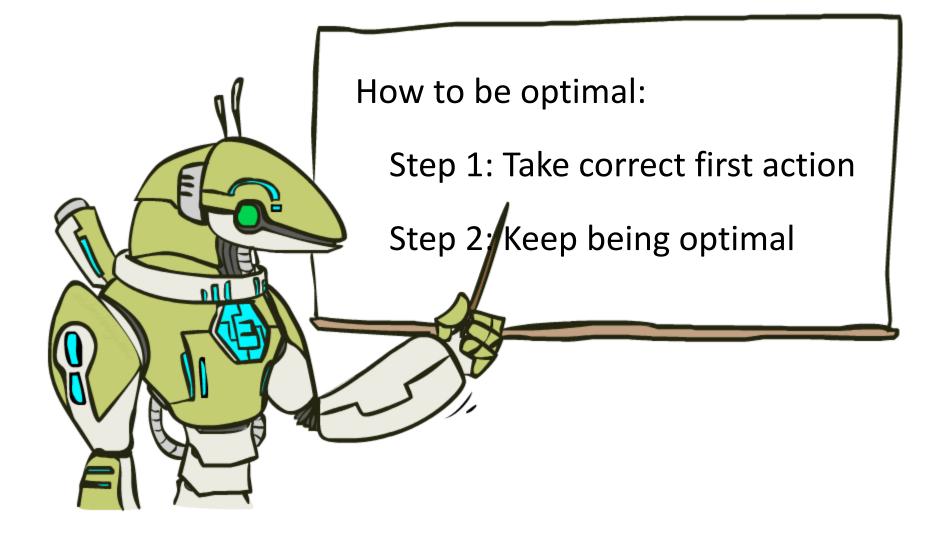
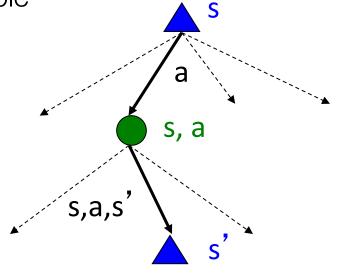



Figure 17.3 The utilities of the states in the 4×3 world, calculated with $\gamma = 1$ and R(s) = -0.04 for nonterminal states.


The Bellman Equations

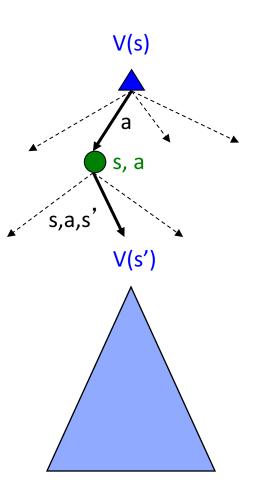
The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value iteration


Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just an *iterative solution method*

Exercise from last time

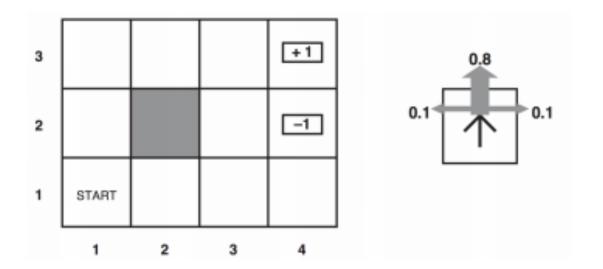
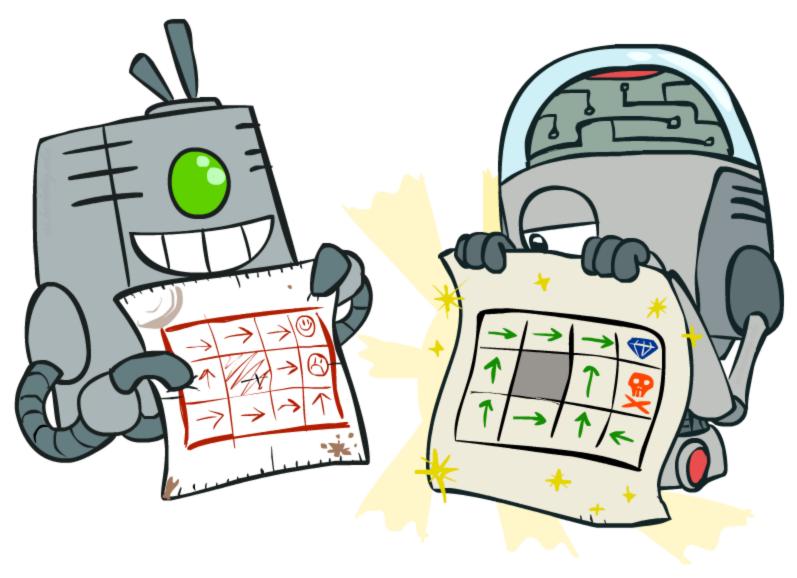
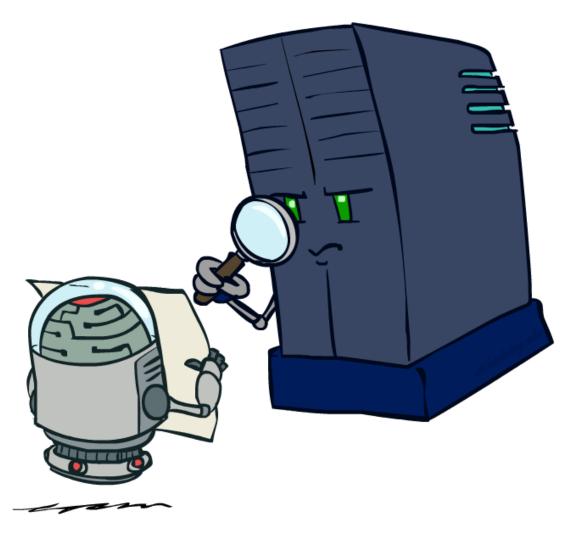
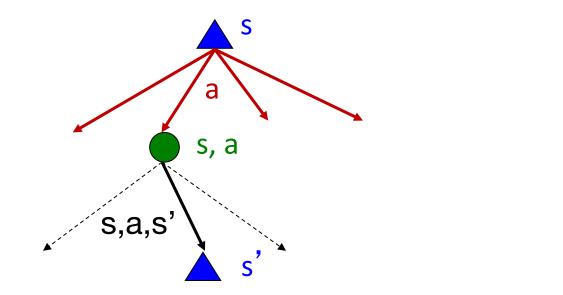



Figure 1: Exciting gridworld from the text (Figure 17.1). Assume R = -0.3 (i.e., the 'living penalty' is -0.3).


Remember: calculate by adding the *instantaneous reward* at a state to the expected utility that will be achieved by the best possible following sequence of actions.

Policies


Policy evaluation

Need a means of evaluating a given policy

Fixed policies

Do the optimal action

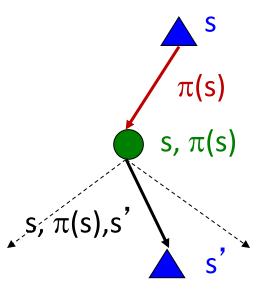
Do what π says to do

_S, π(S),S³

π(s)

s, π(s)

Expectimax trees max over all actions to compute the optimal values

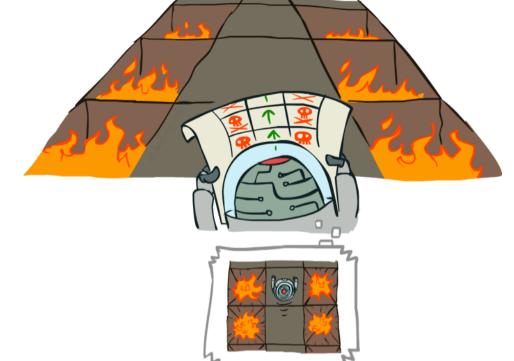

If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state

• ... though the tree's value would depend on which policy we fixed

Utilities for a fixed policy

- Basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π V^{π}(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):


$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: policy evaluation

Always Go Right

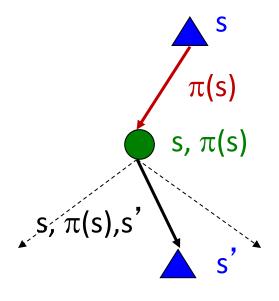
Always Go Forward

Example: policy evaluation

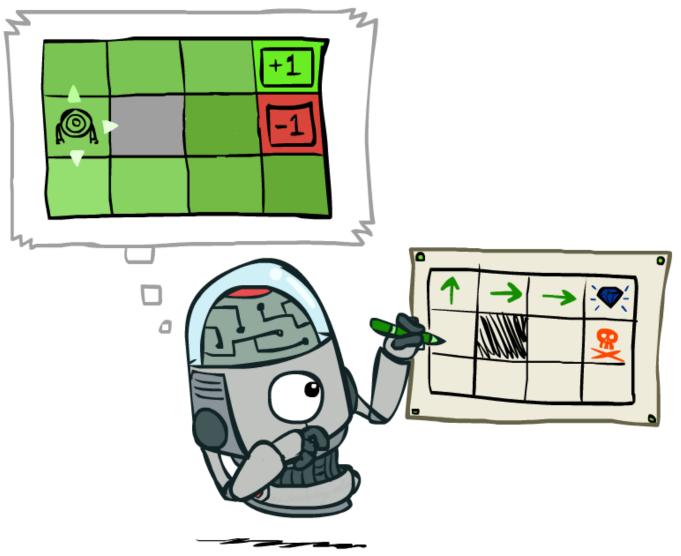
Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward


-10.00	100.00	-10.00
-10.00	* 70.20	-10.00
-10.00	4 8.74	-10.00
-10.00	▲ 33.30	-10.00

Policy evaluation


- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S²) per iteration (we get to drop the a)
- Note that the maxes are gone, so the Bellman equations are just a linear system Could solve with Matlab (or your favorite linear system solver)

Policy extraction

Computing actions from values

Let's imagine we have the optimal values V*(s)

How should we act?

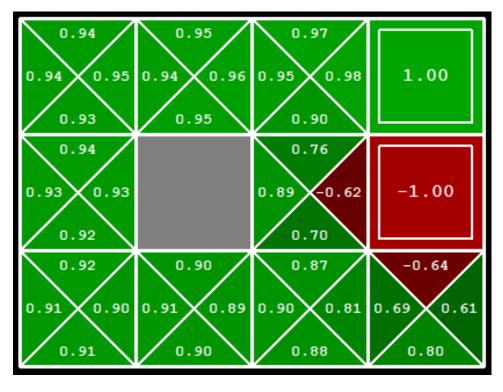
• It's not obvious!

We need to do a mini-expectimax (one step)

0.95 ♪	0.96 ♪	0.98 ♪	1.00
▲ 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

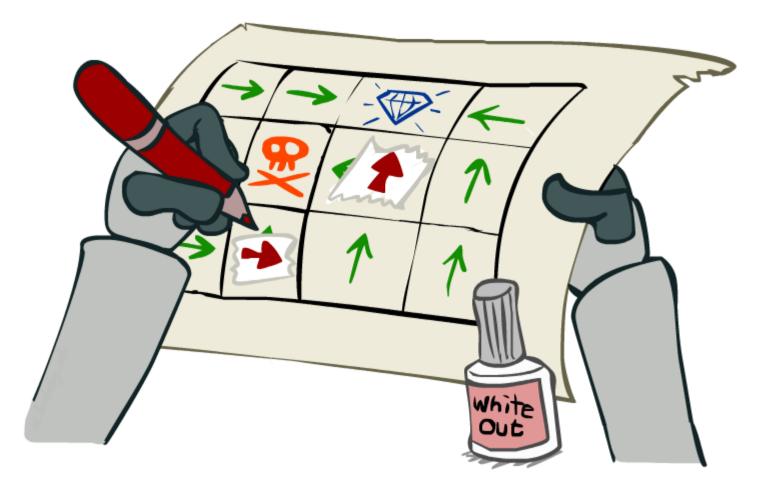
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values


Computing actions from Q-Values

Let's imagine we have the optimal q-values:

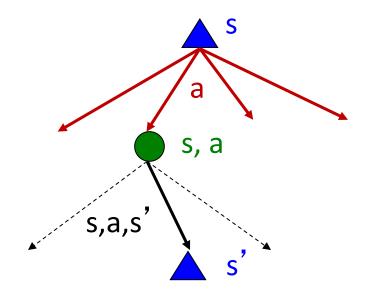
How should we act?

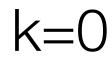

• Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

The lesson: actions are easier to select from q-values than values!

Policy iteration

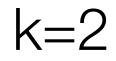



Problems with value Iteration

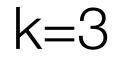
Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow $O(S^2A)$ per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values


00	○ ○ ○ Gridworld Display				
	^	^	^		
	0.00	0.00	0.00	0.00	
	^				
	0.00		0.00	0.00	
	^	^	^	^	
	0.00	0.00	0.00	0.00	

VALUES AFTER 0 ITERATIONS


00	Gridworld Display				
	^	^			
	0.00	0.00	0.00 →	1.00	
	0.00		∢ 0.00	-1.00	
	^	^	^		
	0.00	0.00	0.00	0.00	
				-	

VALUES AFTER 1 ITERATIONS

0.0	O O Gridworld Display				
	•	0.00 >	0.72 →	1.00	
	•		• 0.00	-1.00	
	•	• 0.00	•	0.00	

VALUES AFTER 2 ITERATIONS

Gridworld Display				
0.00 >	0.52 →	0.78 →	1.00	
• 0.00		• 0.43	-1.00	
•	•	•	0.00	

VALUES AFTER 3 ITERATIONS

000	Gridworld	d Display	
0.37 ▶	0.66)	0.83)	1.00
• 0.00		• 0.51	-1.00
•	0.00 →	• 0.31	∢ 0.00

VALUES AFTER 4 ITERATIONS

000	Gridworl	d Display	_
0.51)	0.72 →	0.84)	1.00
• 0.27		• 0.55	-1.00
•	0.22 →	▲ 0.37	∢ 0.13
VALU	S AFTER	5 ITERA	TIONS

000	Gridworld Display				
0.59 →	0.73 →	0.85)	1.00		
^		^			
0.41		0.57	-1.00		
^		^			
0.21	0.31 →	0.43	∢ 0.19		
VALUE	VALUES AFTER 6 ITERATIONS				

00	○ ○ Gridworld Display				
0.62)	0.74 →	0.85)	1.00		
• 0.50		• 0.57	-1.00		
▲ 0.34	0.36)	• 0.45	∢ 0.24		
VALUE	VALUES AFTER 7 ITERATIONS				

0.0	Gridworl	d Display		
0.63)	0.74 ▸	0.85)	1.00	
• 0.53		• 0.57	-1.00	
• 0.42	0.39 →	• 0.46	∢ 0.26	
VALUI	VALUES AFTER 8 ITERATIONS			

000	Gridworl	d Display		
0.64 ▶	0.74 →	0.85)	1.00	
•		^		
0.55		0.57	-1.00	
^		^		
0.46	0.40 →	0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS				

000	O Gridworld Display				
0.64 →	0.74 ♪	0.85)	1.00		
•		•			
0.56		0.57	-1.00		
^		^			
0.48	∢ 0.41	0.47	∢ 0.2 7		
VALUES AFTER 10 ITERATIONS					

k=11

000	Gri	dworld Display			
0.64	• 0.74	▶ 0.85	• 1.00		
^		^			
0.56		0.57	-1.00		
^		^			
0.48	∢ 0.42	0.47	∢ 0.27		
VALUES AFTER 11 ITERATIONS					

Noise = 0.2 Discount = 0.9 Living reward = 0

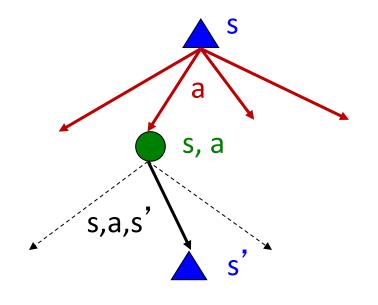
k=12

00	Gridworld Display						
	0.64 →	0.74 ▸	0.85)	1.00			
	• 0.57		• 0.57	-1.00			
	• 0.49	∢ 0.42	• 0.47	∢ 0.28			
	VALUES AFTER 12 ITERATIONS						

Noise = 0.2 Discount = 0.9 Living reward = 0

k=100

0 0	Gridworld Display					
0.64)	0.74 ▶	0.85 →	1.00			
• 0.57		• 0.57	-1.00			
• 0.49	∢ 0.43	• 0.48	∢ 0.28			
VALUES AFTER 100 ITERATIONS						


Noise = 0.2Discount = 0.9 Living reward = 0

Problems with value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow $O(S^2A)$ per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges

This is **policy iteration**

- It's still optimal!
- Can converge (much) faster under some conditions

Policy iteration

Evaluation: For fixed current policy π , find values with policy evaluation: Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

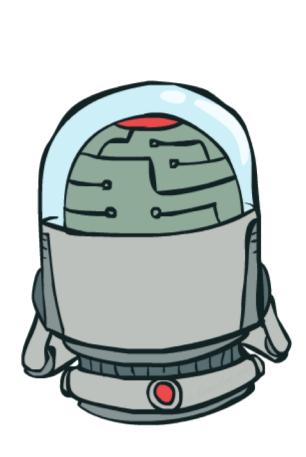
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)

Both are dynamic programs for solving (producing optimal values/policies) MDPs

Summary: MDP algorithms

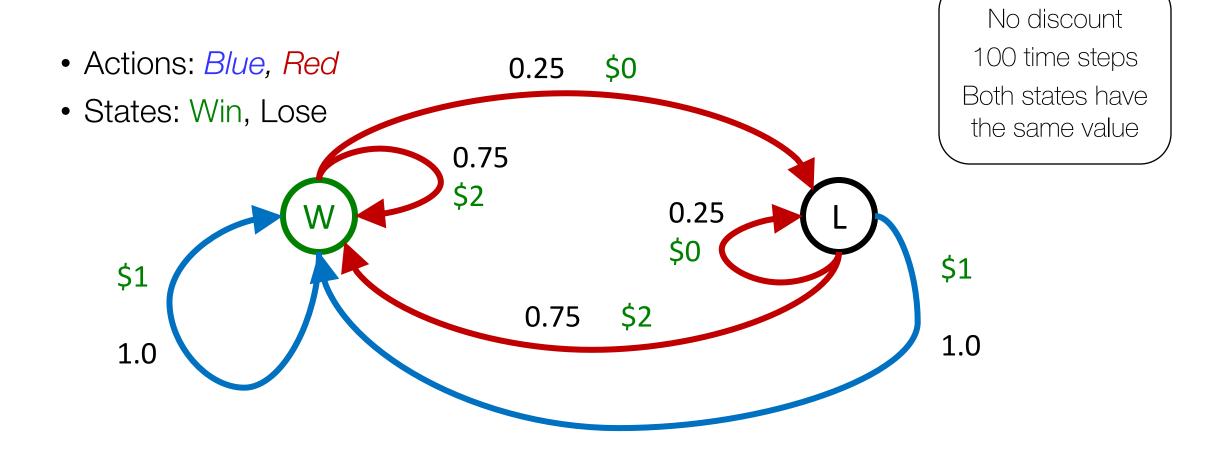
So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

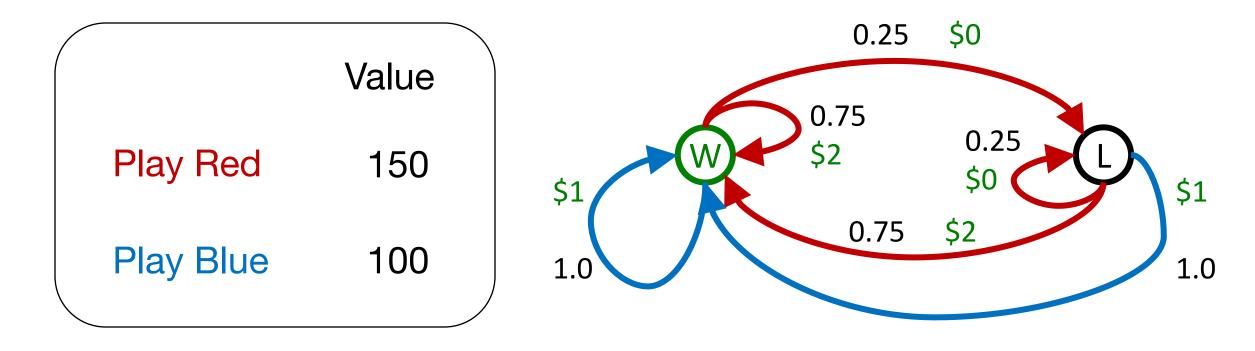

Hey, these all look the same!


- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

From MDPs to reinforcement learning...

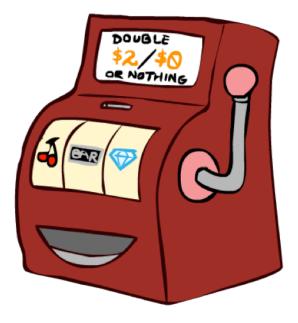

Double bandits

Double bandits

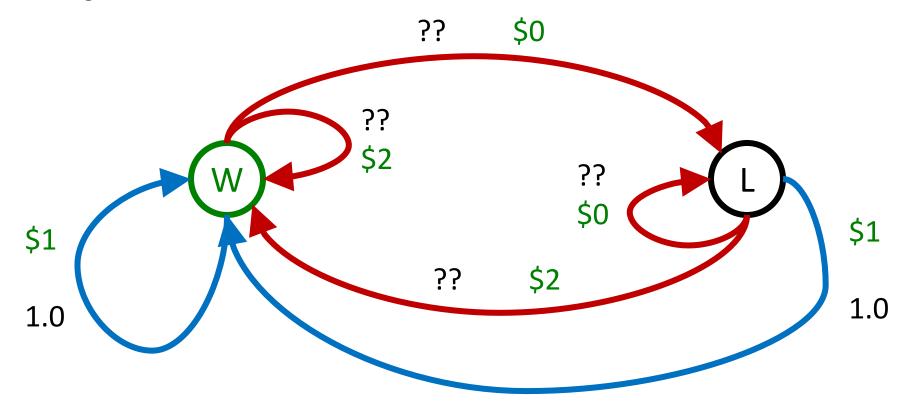


Offline planning

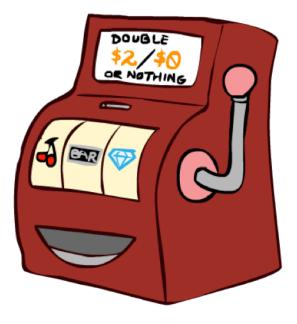
Solving MDPs is offline planning


- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

No discount 100 time steps Both states have the same value



\$2\$2\$0\$2\$2\$0\$0\$0


Online planning

Rules changed! Red's win chance is different.

\$0\$0\$0\$2\$0\$0\$0\$0\$0

What just happened?

That wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

Next time reinforcement learning

Remember: no class Tuesday -- work on HWs!