
Adversarial Search

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

But first… wrap up on CSPs!

Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

Last time we saw how to solve these using ARC3

Reminder: CSPs

Exploiting structure in CSPs
Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:
- Worst-case solution cost is O((n/c)(dc)), linear in n
- E.g., n = 80, d = 2, c =20 (so 4 problems of size 20)
- 280 = 4 billion years at 10 million nodes/sec
- (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
- Compare to general CSPs, where worst-case time is O(dn)

This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Arc consistency
An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could
be assigned without violating a constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

WA SA

NT Q

NSW

V

Algorithm for tree-structured CSPs:
Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Runtime: O(n d2) (why?)

Tree-structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each X®Y was made consistent at one point and Y’s domain could not have been reduced thereafter
(because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

How does this rely on the tree structure again?

Note: we’ll see this basic idea again with Bayes’ nets

Tree-structured CSPs

Summary: CSPs
CSPs are a special kind of search problem:

• States are partial assignments
• Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
• Ordering
• Filtering
• Structure

Iterative min-conflicts is often effective in practice

Adversarial Search

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Game playing state-of-the-art
• Checkers: 1950: First computer player. 1994: First

computer champion: Chinook ended 40-year-reign of
human champion Marion Tinsley using complete 8-
piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current
programs are even better, if less historic.

• Go: Human champions recently (2016!) defeated by
machines; specifically alphago! Checkout
https://deepmind.com/research/alphago/ for more

• Pacman

Adversarial games

• Many different kinds of games!

• Axes:
- Deterministic or stochastic?
- One, two, or more players?
- Zero sum?
- Perfect information (can you see the state)?

• Want algorithms for calculating a strategy
(policy) which recommends a move from
each state

Types of games

Deterministic games

• Many possible formalizations, one is:
- States: S (start at s0)
- Players: P={1...N} (usually take turns)
- Actions: A (may depend on player / state)
- Transition Function: S x A ® S
- Terminal Test: S ® {t,f}
- Terminal Utilities: S x P ® R

• Solution for a player is a policy: S ® A

Zero-Sum games

Zero-Sum Games
• Agents have opposite utilities (values on

outcomes)
• Lets us think of a single value that one

maximizes and the other minimizes
• Adversarial, pure competition

General Games
• Agents have independent utilities (values

on outcomes)
• Cooperation, indifference, competition, and

more are all possible
• More later on non-zero-sum games

Zero-Sum games

Zero-Sum Games
• Agents have opposite utilities (values on

outcomes)
• Lets us think of a single value that one

maximizes and the other minimizes
• Adversarial, pure competition

Adversarial search

Single-agent trees

8

2 0 2 6 4 6… …

Value of a State
Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: The
best achievable

outcome (utility) from
that state

Adversarial game trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax

Minimax values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

-10-8

-8

Tic-Tac-Toe game tree

Adversarial search (Minimax)
Deterministic, zero-sum games:

• Tic-tac-toe, chess, checkers
• One player maximizes result
• The other minimizes result

Minimax search:
• A state-space search tree
• Players alternate turns
• Compute each node’s minimax value: the

best achievable utility against a rational
(optimal) adversary 8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax implementation

def	min-value(state):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	max-value(successor))
return	v

def	max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	min-value(successor))
return	v

Minimax implementation (dispatch)
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def	min-value(state):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	value(successor))
return	v

def	max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v

12 8 5 23 2 144 6

Minimax

Max’s turn

Min’s turn

In class exercise on minimax

Note: assume Ryu gets first move!

Shortcoming of minimax?

S=0

score S = Ryu’s health points - Ken’s

depth

100

0

1

turn

Ryu (max)

Ken (min)

B P

010Ryu (max)

B P

2

B P

00

ken’s move

ryu’s move

Minimax properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

We’ll address this issue next class!

Minimax efficiency
How efficient is minimax?

• Just like (exhaustive) DFS
• Time: O(bm)
• Space: O(bm)

Example: For chess, b » 35, m » 100
• Exact solution is completely infeasible
• But, do we need to explore the whole tree?

Resource limits

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
- Instead, search only to a limited depth in the tree
- Replace terminal utilities with an evaluation function for

non-terminal positions

Example:
- Suppose we have 100 seconds, can explore 10K nodes

/ sec
- So can check 1M nodes per move
- a-b (we will see in a bit) reaches about depth 8 – decent

chess program

Guarantee of optimal play is gone

More plies makes a BIG difference
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Resource limits

Depth matters

• Evaluation functions are always imperfect

• The deeper in the tree the evaluation function is buried,
the less the quality of the evaluation function matters

• An important example of the tradeoff between complexity
of features and complexity of computation

Evaluation functions

Tic-Tac-Toe

• Reasonable evaluation function?

Tic-Tac-Toe

• Reasonable evaluation function?

Perhaps:
[# of 3-lengths open for me] –

[# of 3-lengths open for you]

Evaluation functions
Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position
In practice: typically weighted linear sum of features:

e.g. f1(s) = (num white queens – num black queens), etc.

Board snapshots: need scalars from
eval function that effectively rank these

A

B

C

Board snapshots: need scalars from
eval function that effectively rank these

Ev
al

(s
ta

te
)

Thrashing (starving PacMan)

A danger of replanning agents!
• He knows his score will go up by eating the dot now (west, east)
• He knows his score will go up just as much by eating the dot later (east, west)
• There are no point-scoring opportunities after eating the dot (within the horizon, two here)
• Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

A danger of replanning agents!
• He knows his score will go up by eating the dot now (west, east)
• He knows his score will go up just as much by eating the dot later (east, west)
• There are no point-scoring opportunities after eating the dot (within the horizon, two here)
• Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

8

8 8

8-2

Thrashing (starving PacMan)

A danger of replanning agents!
• He knows his score will go up by eating the dot now (west, east)
• He knows his score will go up just as much by eating the dot later (east, west)
• There are no point-scoring opportunities after eating the dot (within the horizon, two here)
• Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

9

8 8

8-2

Thrashing (starving PacMan)

When you see thrashing…
… You probably need to revisit your evaluation function

Game tree pruning

Returning to our minimax example

12 8 5 23 2 144 6

What did we do that was inefficient here?

max

min

Minimax pruning

12 8 5 23 2 14

max

min

Alpha-Beta pruning
General configuration (MIN version)

• We’re computing the MIN-VALUE at some node n
• We’re looping over n’s children
• n’s estimate of the childrens’ min is dropping
• Who cares about n’s value? MAX
• Let a be the best value that MAX can get at any choice point along

the current path from the root
• If n becomes worse than a (n<=a), MAX will avoid it, so we can stop

considering n’s other children (it’s already bad enough that it won’t
be played)

MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Alpha-Beta implementation

def min-value(state,	α,	β):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	value(successor,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def	max-value(state,	α,	β):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor,	α,	β))
if v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta implementation

def min-value(state,	α,	β):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	value(successor,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def	max-value(state,	α,	β):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor,	α,	β))
if v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Can we use this for action planning?

10 10 0

max

min
What should max do?
What does alpha-beta do?

Can we use this for action planning?

10 10 0

max

min
What should max do?
What does alpha-beta do?

<=1010

From the root it looks like Max could pick either branch, but this is wrong, although the value is correct.

Alpha-Beta pruning properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

Good child ordering improves effectiveness of pruning

With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth (in best case)!
• Full search of, e.g. chess, is still hopeless…

This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

That’s all for today

• Next time: uncertain outcomes – playing with expectations and utilities

Alpha-Beta example

Example 2

