
Constraint Satisfaction Problems

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

But first: wrapping up A* from last time

A* Graph search gone wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S	(0+2)

A	(1+4) B	(1+1)

C	(2+1)

G	(5+0)

C	(3+1)

G	(6+0)

State space graph Search tree

A* Graph search gone wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S	(0+2)

A	(1+4) B	(1+1)

C	(2+1)

G	(5+0)

C	(3+1)

G	(6+0)

State space graph Search tree

Closed set:
{SBC}

Whoops! What went wrong??

Consistency of heuristics

Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:

The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality of A* graph search
Sketch: consider what A* does with a consistent heuristic:

• Fact 1: In tree search, A* expands nodes in increasing total
f value (f-contours)

• Fact 2: For every state s, nodes that reach s optimally are
expanded before nodes that reach s suboptimally

• Result: A* graph search is optimal

…

f	£ 3

f	£ 2

f	£ 1

Optimality
Tree search:

• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h=0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

A* Summary
• A* uses both backward costs and (estimates of) forward costs

• A* is optimal with admissible / consistent heuristics

• Heuristic design is key: often use relaxed problems

Constraint Satisfaction Problems

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Search, so far
• Assumptions we have made about the world: a single agent, deterministic actions, fully observed

state, discrete state space.

• So far we have mostly cared about planning or finding sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance

• Other problems concern identification: finding assignments for variables
- The goal itself is important, not the path
- All paths at the same depth (for some formulations)
- Constraint Satisfaction Problems (CSPs) are specialized for identification problems

Constraint satisfaction problems

Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a domain

D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Constraint satisfaction problems

CSP Examples

Map coloring
Variables:

Domain:

Constraints: adjacent regions must have different colors

Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

N-Queens

Formulation 1
• Variables:
• Domains:
• Constraints

Formulation 2
• Variables:
• Domains:
• Constraints:

Implicit:

Explicit:

N-Queens

Constraint graphs

• Binary CSP: each constraint relates (at most) two variables

• Binary constraint graph: nodes are variables, arcs show
constraints

• General-purpose CSP algorithms use the graph structure to
speed up search. E.g., Tasmania is an independent
subproblem!

Constraint graphs

Cryptarithmetic

Variables:

Domains:

Constraints:

Sudoku
Variables:

Each (open) square
Domains:

{1,2,…,9}
Constraints:

9-way all-diff for each row

9-way all-diff for each column

9-way all-diff for each region
(or can have a bunch of pairwise
inequality constraints)

Varieties of CSPs and constraints

Varieties of CSPs
Discrete Variables

• Finite domains
• n variables with domain size d means O(dn) complete

assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)

• Infinite domains (integers, strings, etc.)
• e.g., job scheduling, variables are start/end times for each job
• Linear constraints solvable, nonlinear undecidable

Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time by Linear

Programming methods (we won’t cover this here, but a huge and
important topic)

Varieties of Constraints
• Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems
• (We’ll ignore these until we get to Bayes’ nets)

Varieties of constraints

Real-world CSPs

• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…

Great, but how do we solve these things?

Standard search formulation
Standard search formulation of CSPs

States defined by the values assigned so far (partial
assignments)

• Initial state: the empty assignment, {}
• Successor function: assign a value to an unassigned

variable
• Goal test: the current assignment is complete and

satisfies all constraints

In-class exercise
• Work on your own or in small groups

• Be sure to write everyone’s name legibly!

• Oops! Hand-out should read “successor function to
generate children is

How’d we do?

Backtracking search
Backtracking search is the basic uninformed algorithm for solving
CSPs

Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

Depth-first search with these two improvements is called
backtracking search (not the best name)

Can solve n-queens for n » 25

Backtracking example

Backtracking search

Backtracking = DFS + variable-ordering + fail-on-violation

Improving backtracking

Ordering:
• Which variable should be assigned (expanded) next?
• In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Filtering: Keep track of domains for unassigned variables and cross off bad option

Filtering: forward checking

WA
SA
NT Q

NSW
V

Forward checking

Assume we have assigned WA red. Let’s think about the remaining vars.

WA SA

NT Q

NSW

V

Filtering: constraint propagation
Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

Consistency of a single arc
An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could
be assigned without violating a constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

WA SA

NT Q

NSW

V

Arc consistency of an entire CSP
A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
- i.e., you need to reconsider all arcs going into!

• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

Remember:
Delete from the

tail!

WA SA
NT Q

NSW

V

Enforcing arc consistency in a CSP

Enforcing arc consistency in a CSP

• Naïve runtime: O(n2d3) -- can be reduced to O(n2d2)
• … but detecting all possible future problems is NP-hard – why?

Limitations of arc consistency

After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search!

What went
wrong here?

Ordering

Ordering: minimum remaining values
Variable Ordering: Minimum remaining values (MRV):

• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

Ordering: least constraining value
Value Ordering: Least Constraining Value

• Given a choice of variable, choose the least constraining value
• I.e., the one that rules out the fewest values in the remaining

variables
• Note that it may take some computation to determine this!

(E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes
1000 queens feasible

Limitations of arc consistency

After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not know it)

What went
wrong here?

K-consistency: beyond pairs
Increasing degrees of consistency

- 1-Consistency (Node Consistency): Each single node’s domain has a value which
meets that node’s unary constraints

- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other

- K-Consistency: For each k nodes, any consistent assignment to k-1 can be
extended to the kth node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency)

Q

Can a CSP be k-consistent but not k-1 consistent?

Strong K-consistency
• Strong k-consistency: also k-1, k-2, … 1 consistent

• Claim: strong n-consistency means we can solve without backtracking!

• Why?
- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- …

• Lots of middle ground between arc consistency and n-consistency! (e.g.
k=3, called path consistency)

Exploiting structure
Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:
- Worst-case solution cost is O((n/c)(dc)), linear in n
- E.g., n = 80, d = 2, c =20 (so 4 problems of size 20)
- 280 = 4 billion years at 10 million nodes/sec
- (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
- Compare to general CSPs, where worst-case time is O(dn)

This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Algorithm for tree-structured CSPs:
Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Runtime: O(n d2) (why?)

Tree-structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each X®Y was made consistent at one point and Y’s domain could not have been reduced thereafter
(because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

How does this rely on the tree structure again?

Note: we’ll see this basic idea again with Bayes’ nets

Tree-structured CSPs

Summary: CSPs
CSPs are a special kind of search problem:

• States are partial assignments
• Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
• Ordering
• Filtering
• Structure

Iterative min-conflicts is often effective in practice

That’s it for today!

Next time: adversarial search

