CS 4100 // artificial intelligence

Constraint Satisfaction Problems

Attribution: many of these slides are modified versions of those distributed with the <u>UC Berkeley CS188</u> materials Thanks to <u>John DeNero</u> and <u>Dan Klein</u>

But first: wrapping up A* from last time

A* Graph search gone wrong?

State space graph

Search tree

A* Graph search gone wrong?

Consistency of heuristics

Main idea: estimated heuristic costs \leq actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \le actual cost from A to G$

• **Consistency**: heuristic "arc" cost \leq actual cost for each arc

 $h(A) - h(C) \le cost(A \text{ to } C)$

Consequences of consistency:

The f value along a path never decreases

 $h(A) \le cost(A \text{ to } C) + h(C)$

A* graph search is optimal

Optimality of A* graph search

Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal

Optimality

Tree search:

- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)

Graph search:

- A* optimal if heuristic is consistent
- UCS optimal (h=0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A* Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

CS 4100 // artificial intelligence

Constraint Satisfaction Problems

Attribution: many of these slides are modified versions of those distributed with the <u>UC Berkeley CS188</u> materials Thanks to <u>John DeNero</u> and <u>Dan Klein</u>

Search, so far

- Assumptions we have made about the world: a single agent, deterministic actions, fully observed state, discrete state space.
- So far we have mostly cared about *planning* or finding sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Other problems concern identification: finding assignments for variables
 - The goal itself is important, *not the path*
 - All paths at the same depth (for some formulations)
 - Constraint Satisfaction Problems (CSPs) are specialized for identification problems

Constraint satisfaction problems

Constraint satisfaction problems

Standard search problems:

- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

Constraint satisfaction problems (CSPs):

- A special subset of search problems
- State is defined by variables X_i with values from a domain D (sometimes D depends on i)
- *Goal test* is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power than standard search algorithms

Map coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domain: $D = \{red, green, blue\}$

Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Formulation 1

- Variables: X_{ij}
- Domains: $\{0, 1\}$
- Constraints

 $\begin{aligned} \forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$

Formulation 2

- Variables: Q_k
- Domains: $\{1, 2, 3, ..., N\}$
- Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

Constraint graphs

Constraint graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an *independent* subproblem!

Cryptarithmetic

Variables:

 $F T U W R O X_1 X_2 X_3$ Domains:

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Constraints:

alldiff(F, T, U, W, R, O) $O + O = R + 10 \cdot X_1$ $\begin{array}{c} T W O \\ + T W O \\ F O U R \end{array}$

Sudoku

Variables: Each (open) square Domains: {1,2,...,9} Constraints: 9-way all-diff for each column 9-way all-diff for each row 9-way all-diff for each region (or can have a bunch of pairwise inequality constraints)

Varieties of CSPs and constraints

Varieties of CSPs

Discrete Variables

- Finite domains
 - n variables with domain size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
- Infinite domains (integers, strings, etc.)
 - e.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by Linear Programming methods (we won't cover this here, but a huge and important topic)

Varieties of constraints

Varieties of Constraints

• Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

• Binary constraints involve pairs of variables, e.g.:

 $SA \neq WA$

• *Higher-order* constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

Preferences (soft constraints):

- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Real-world CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

• Many real-world problems involve real-valued variables...

Great, but how do we solve these things?

Standard search formulation

Standard search formulation of CSPs

States defined by the values assigned so far (partial assignments)

- Initial state: the empty assignment, {}
- Successor function: assign a value to an unassigned variable
- Goal test: the current assignment is complete and satisfies all constraints

In-class exercise

- Work on your own or in small groups
- Be sure to write everyone's name *legibly*!
- Oops! Hand-out should read "successor function to generate children is

How'd we do?

Backtracking search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time

- Variable assignments are commutative, so fix ordering
- I.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go

- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"

Depth-first search with these two improvements is called *backtracking search* (not the best name)

Can solve n-queens for $n \approx 25$

Backtracking example

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure return RECURSIVE-BACKTRACKING($\{$ $\}$, csp) function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp) for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure

Backtracking = DFS + variable-ordering + fail-on-violation

Improving backtracking

Ordering:

- Which variable should be assigned (expanded) next?
- In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Filtering: forward checking

Filtering: Keep track of domains for unassigned variables and cross off bad option

Forward checking

Assume we have assigned WA red. Let's think about the remaining vars.

Filtering: constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of a single arc

An arc $X \rightarrow Y$ is **consistent** iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc consistency of an entire CSP

A simple form of propagation makes sure **all** arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
 - i.e., you need to reconsider all arcs going into!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing arc consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables { X_1, X_2, \ldots, X_n } local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then for each X_k in NEIGHBORS $[X_i]$ do add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in DOMAIN[X_i] do if no value y in DOMAIN[X_j] allows (x, y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from DOMAIN[X_i]; removed \leftarrow true return removed

Enforcing arc consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables { $X_1, X_2, ..., X_n$ } local variables: queue, a queue of arcs, initially all the arcs in cspwhile queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_k in NEIGHBORS[X_i] do add (X_k, X_i) to queue

```
function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds

removed \leftarrow false

for each x in DOMAIN[X_i] do

if no value y in DOMAIN[X_j] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_j

then delete x from DOMAIN[X_i]; removed \leftarrow true

return removed
```

- Naïve runtime: $O(n^2d^3)$ -- can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard why?

Limitations of arc consistency

After enforcing arc consistency:

- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search!

What went wrong here?

Ordering

Ordering: minimum remaining values

Variable Ordering: Minimum remaining values (MRV):

• Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: least constraining value

Value Ordering: Least Constraining Value

- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes 1000 queens feasible

Limitations of arc consistency

After enforcing arc consistency:

- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left (and not know it)

What went wrong here?

K-consistency: beyond pairs

Increasing degrees of consistency

- 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one *can* be extended to the other
- K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

Higher *k* more expensive to compute

(You need to know the *k*=2 case: arc consistency)

Can a CSP be *k*-consistent but not *k*-1 consistent?

Strong K-consistency

- Strong *k*-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!

• Why?

- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2

- ...

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Exploiting structure

Extreme case: independent subproblems

- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as connected components of constraint graph

Suppose a graph of n variables can be broken into subproblems of only c variables:

- Worst-case solution cost is O((n/c)(d^c)), linear in n
- E.g., n = 80, d = 2, c = 20 (so 4 problems of size 20)
- $2^{80} = 4$ billion years at 10 million nodes/sec
- $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time

- Compare to general CSPs, where worst-case time is O(dⁿ)

This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-structured CSPs

Algorithm for tree-structured CSPs:

Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply Removelnconsistent(Parent(X_i), X_i) **Assign forward**: For i = 1 : n, assign X_i consistently with Parent(X_i)

Runtime: O(n d²) (why?)

Tree-structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each $X \rightarrow Y$ was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack *Proof*: Induction on position

How does this rely on the tree structure again?

Note: we'll see this basic idea again with Bayes' nets

Summary: CSPs

CSPs are a special kind of search problem:

- States are partial assignments
- Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:

- Ordering
- Filtering
- Structure

Iterative min-conflicts is often effective in practice

That's it for today!

Next time: *adversarial search*