CS 4100 // artificial intelligence

INstructor: byron wallace

W Constraint Satisfaction Problems

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Sut first: wrapping up A* from last time

A* Graph search gone wrong'?
State space graph

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} !

G (5+0) G (6+0)

A* Graph search gone wrong'?

State space graph Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

(2+ C (3+1)
Closed set:
{SBC} l
G (5+ G (6+0)

Whoops! What went wrong??

Consistency of heuristics

Main idea: estimated heuristic costs < actual costs
» Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
» Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to O)

Consequences of consistency:
The f value along a path never decreases

h(A) < cost(A to C) + h(C)

A* graph search is optimal

Optimality of A* graph search
Sketch: consider what A* does with a consistent heuristic:

« Fact 1: In tree search, A* expands nodes in increasing total
f value (f-contours)

» Fact 2: For every state s, nodes that reach s optimally are
expanded before nodes that reach s suboptimally

* Result: A* graph search is optimal

Optimality

Tree search:
« A*is optimal if heuristic is admissible
« UCS is a special case (h = 0)

Graph search:
« A* optimal if heuristic is consistent
» UCS optimal (h=0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

A* Summary

» A* uses both backward costs and (estimates of) forward costs
* A”is optimal with admissible / consistent heuristics

» Heuristic design is key: often use relaxed problems

CS 4100 // artificial intelligence

INstructor: byron wallace

W Constraint Satisfaction Problems

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Search, so far

« Assumptions we have made about the world: a single agent, deterministic actions, fully observed
state, discrete state space.

« So far we have mostly cared about planning or finding sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance

« Other problems concern identification: finding assignments for variables
- The goal itself is important, not the path
- All paths at the same depth (for some formulations)
- Constraint Satisfaction Problems (CSPs) are specialized for identification problems

Constraint satisfaction problems

Constraint satisfaction problems

Standard search problems:
« State is a “black box”: arbitrary data structure
» Goal test can be any function over states
» Successor function can also be anything

Constraint satisfaction problems (CSPs):

* A special subset of search problems

« State is defined by variables X; with values from a domain
D (sometimes D depends on i5

» (Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

Vap coloring
Variables: WA, NT, Q, NSW, V, SA, T

Domain: D = {red, green, blue}

Constraints: adjacent regions must have different colors

Implicit: WA 7%= NT

Explicit: (WA,NT) € {(red, green), (red, blue), ...}

Solutions are assignments satisfying all constraints, e.g.:
{WA=red, NT=green, Q=red, NSW=green,

V=red, SA=Dblue, T=green}

N-Queens

Formulation 1
* Variables: X
« Domains: {0, 1}
« Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi, 7, k (Xij,ij) € {(0,0),(0,1),(1,0)} ZXij —
Vi, j, k (Xij, Xitk j+x) € 1(0,0),(0,1),(1,0)} &

Vi, g,k (Xij, Xigri—k) € 1(0,0),(0,1),(1,0)}

N-Queens

Formulation 2 @1
* Variables: Q. Q2
» Domains: {1,2,3,... N} @3
» Constraints: Qa

mplicit: V4, 7 non-threatening(Q;, Q;)

Explicit: (Q17Q2> S {(173)7 (174)7 x }

Constraint graphs

Constraint graphs

» Binary CSP: each constraint relates (at most) two variables

« Binary constraint graph: nodes are variables, arcs show
constraints

» General-purpose CSP algorithms use the graph structure to
speed up search. E.g., Tasmania is an independent
subproblem!

Cryptarithmetic

Variables:

FTUW RO X1 X> X3
Domains:

{O, 1,2,3,4,5,6,7,3, 9}
Constraints:

alldiff(F. T, U, W, R, O)

O4+0=R+10-X;

Sudoku

Variables:

Each (open) square
Domains:

{1,2,...,9}

Constraints:
9-way all-diff for each column

9-way all-diff for each row

9-way all-diff for each region

(or can have a bunch of pairwise
inequality constraints)

Varieties of CSPs and constraints

Varieties of CSPS

Discrete Variables
* Finite domains

* n variables with domain size d means O(d") complete
assignments

« E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

* Infinite domains (integers, strings, etc.)

* e.g., job scheduling, variables are start/end times for each job
 Linear constraints solvable, nonlinear undecidable

Continuous variables

« E.g., start/end times for Hubble Telescope observations

» Linear constraints solvable in polynomial time by Linear

Programming methods (we won’t cover this here, but a huge and
important topic)

Varieties of constraints

Varieties of Constraints

« Unary constraints involve a single variable (equivalent to
reducCing domains), e.g.:

SA £ green

» Binary constraints involve pairs of variables, e.g.:
SA #= WA

* Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):
E.g., red is better than green
Often representable by a cost for each variable assignment
Gives constrained optimization problems

(We'll ignore these until we get to Bayes’ nets)

Real-world CSPs

« Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when and where?
« Hardware configuration

 Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots morel

Many real-world problems involve real-valued variables...

Great, but how do we solve these things”

Standard search formulation

Standard search formulation of CSPs

States defined by the values assigned so far (partial
assignments)
* |nitial state: the empty assignment, {}
« Successor function: assign a value to an unassigned
variable

« Goal test: the current assignment is complete and
satisfies all constraints

IN-class exerclse

« Work on your own or in small groups @

« Be sure to write everyone’s name legibly!

* Oops! Hand-out should read “successor function to
generate children is

How'd we do”?

Backtracking search

(E%esl%ktracking search is the basic uninformed algorithm for solving
S

ldea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
* l.e., [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assignments to a single variable at each step

¥

|dea 2: Check constraints as you go
 |.e. consider only values which do not conflict previous assignments
« Might have to do some computation to check the constraints
* “Incremental goal test”

Depth-first search with these two improvements is called
backtracking search (not the best name)

Can solve n-queens for n =~ 25

Backtracking example

U

Pl

- ¢ &
—
"o

&S

oo

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Backtracking = DFS + variable-ordering + fail-on-violation

Improving packiracking

Ordering:
« Which variable should be assigned (expanded) next?
 In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

-iltering: forward checking

Filtering: Keep track of domains for unassigned variables and cross off bad option

NT| Q

SA NSW,

WA

WA NT Q NSW Vv SA

~orward checking

WA NT Q NSW Vv SA
. \iL‘ I IF T ICEIrE I I
gy [o—

Assume we have assigned WA red. Let’s think about the remaining vars.

~ltering: constraint propagation

Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW \'} SA
VT i T Ir I IrE IrE I
‘ A Toow) | (BB EEIEECE] W
b I Tl 1L I

« NT and SA cannot both be blue!
« Why didn’t we detect this yet?
« Constraint propagation: reason from constraint to constraint

Consistency of a single arc

An arc X — Y is consistent iff for every x in the tall there is some y in the head which could
be assigned without violating a constraint

L

WA NT Q NSW \' SA
NT
- T I I T I 1

-y W
v

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc consistency of an entire CSP

A simple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW vV SA
A Tw I | 1 C 1 1

v 1\ VV‘

Important: /f X loses a value, neighbors of X need to be rechecked!

- i.e., you need to reconsider all arcs going into!

« Arc consistency detects failure earlier than forward checking Remember:
« Can be run as a preprocessor or after each assignment Delete frpim the
« What'’s the downside of enforcing arc consistency? taill

—nforcing arc consistency in a CsP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X,) then
for each X} in NEIGHBORs[.X|| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[.X] allows (z,y) to satisfy the constraint X; «— X,
then delete 2 from DOMAIN[X;]; removed «— true
return removed

—nforcing arc consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X,) then
for each X} in NEIGHBORs[.X|| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «— false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[.X] allows (z,y) to satisfy the constraint X; «— X,
then delete 2 from DOMAIN[X;]; removed «— true
return removed

« Naive runtime: O(n2d3) -- can be reduced to O(n2d?)
* ... but detecting all possible future problems is NP-hard — why?

Limitations of arc consistency

After enforcing arc consistency: O
« Can have one solution left ‘
« Can have multiple solutions left a o

» Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search! @

< &

What went
wrong here?

.
.

Ordering

Ordering: minimum remaining values

Variable Ordering: Minimum remaining values (MRV):
« Choose the variable with the fewest legal left values in its domain

_5:

* Why min rather than max?

* Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: least constraining value

Value Ordering: Least Constraining Value .
» Given a choice of variable, choose the least constraining value “_LI:

\ =

» |.e., the one that rules out the fewest values in the remaining
variables

» Note that it may take some computation to determine this!
(E.g., rerunning filtering)

<

Why least rather than most?

Combining these ordering ideas makes
1000 queens feasible

Limitations of arc consistency

After enforcing arc consistency:
» Can have one solution left
» Can have multiple solutions left
« Can have no solutions left (and not know it)

What went
wrong here?

K-consistency: beyond pairs ®

Increasing degrees of consistency ‘
= @
- 1-Consistency (Node Consistency): Each single node’s domain has a value which
meets that node’s unary constraints /‘\
- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other < ‘ o '
- K-Consistency: For each k nodes, any consistent assignment to k-1 can be \‘/

extended to the ki node.

Higher k more expensive to compute ‘

(You need to know the k=2 case: arc consistency)

Q

Can a CSP be k-consistent but not k-1 consistent?

Strong K-consistency

« Strong k-consistency: also k-1, k-2, ... 1 consistent

 Claim: strong n-consistency means we can solve without backtracking!

o Why"?
- Choose any assignment to any variable
Choose a new variable
By 2-consistency, there is a choice consistent with the first
Choose a new variable
By 3-consistency, there is a choice consistent with the first 2

« Lots of middle ground between arc consistency and n-consistency! (e.g.
k=3, called path consistency)

—Xploiting structure

Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only ¢ variables:

- Worst-case solution cost is O((n/c)(d?)), linear in n

- E.g.,n=80,d =2, ¢c =20 (so 4 problems of size 20)

- 280 = 4 Dillion years at 10 million nodes/sec

- (4)(229) = 0.4 seconds at 10 million nodes/sec

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
- Compare to general CSPs, where worst-case time is O(d")

This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-structured CSPs

Algorithm for tree-structured CSPs:

Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i =n: 2, apply Removelnconsistent(Parent(X),X;
Assign forward: For i = 1 : n, assign X consistently with Parent(X;)

Runtime: O(n d?) (why?)

Tree-structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have been reduced thereafter
(because Y'’s children were processed before YY)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

How does this rely on the tree structure again?

Note: we'll see this basic idea again with Bayes’ nets

summary: CSPs

CSPs are a special kind of search problem:
« States are partial assignments
« Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
» Ordering
* Filtering
« Structure

lterative min-conflicts is often effective in practice

That's it for toaay!

Next time: adversarial search

