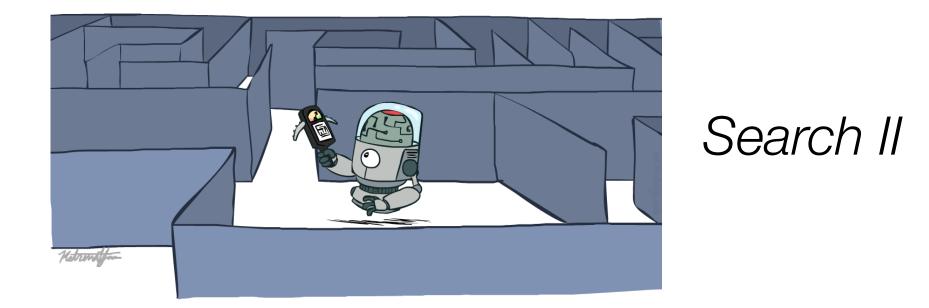
CS 4100 // artificial intelligence



Attribution: many of these slides are modified versions of those distributed with the <u>UC Berkeley CS188</u> materials Thanks to <u>John DeNero</u> and <u>Dan Klein</u>

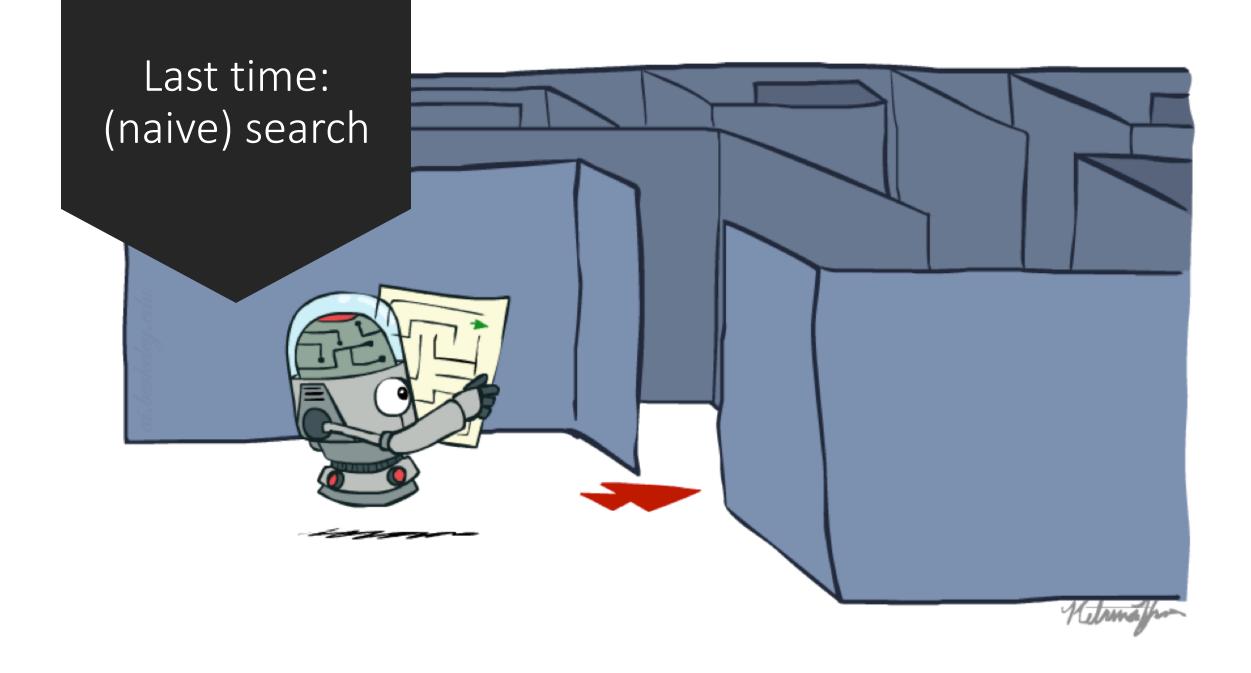
Questions before we begin?

• On HW or anything else?

Informed Search

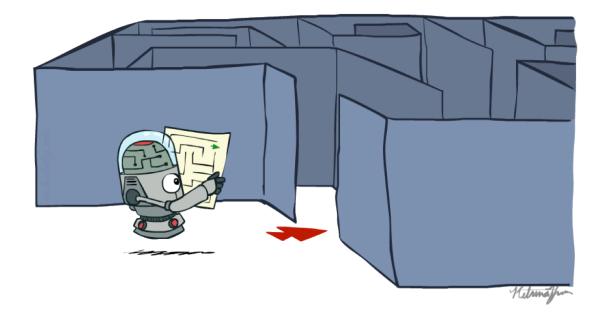
- Heuristics
- Greedy Search
- A* Search

Graph Search



Search problem

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

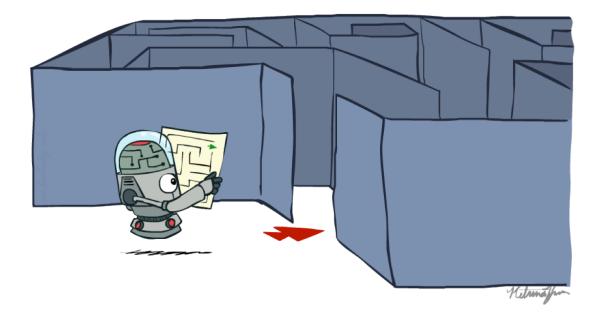


Search problem

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)



Search problem

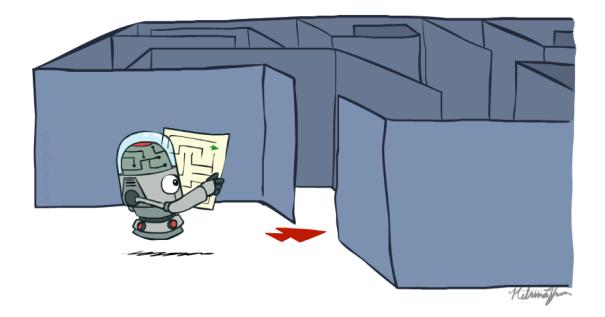
- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree

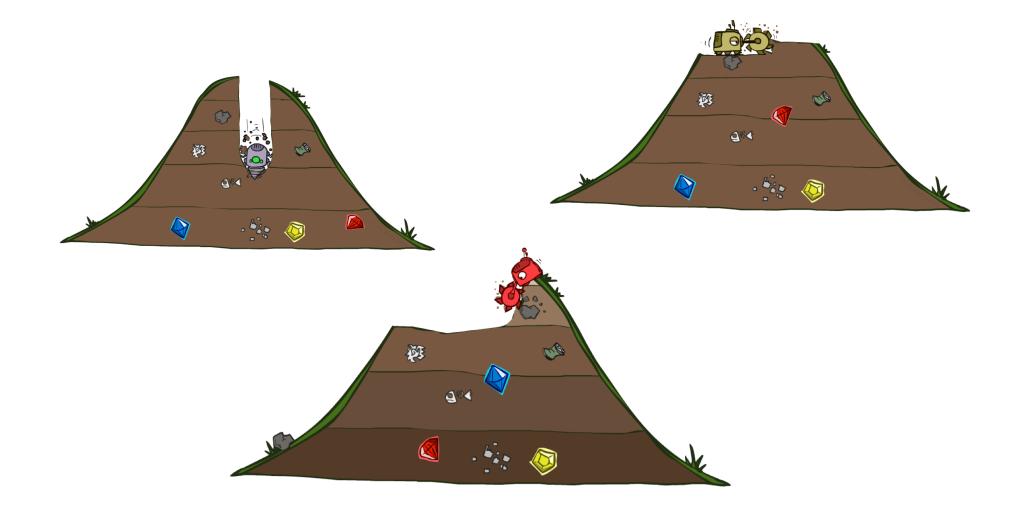
- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search algorithm

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans



DFS, BFS, UCS



General tree search algorithm

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state $then \ return$ the corresponding solution

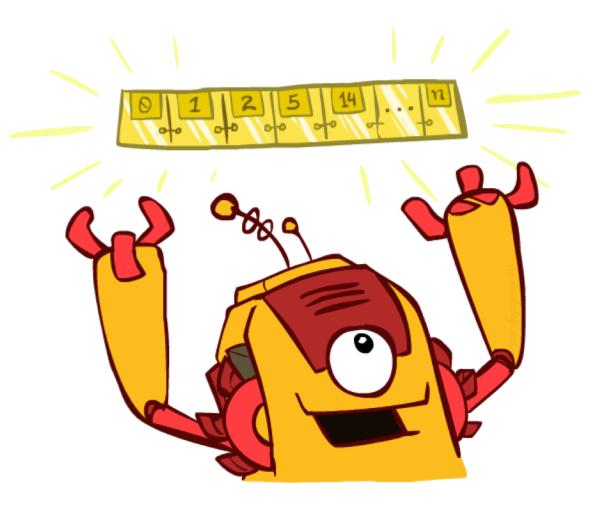
 \mathbf{else} expand the node and add the resulting nodes to the search tree

 \mathbf{end}

The one queue

These search algorithms are the same except for fringe strategies

- Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
- Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues



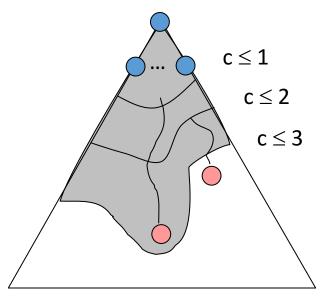
Uniform Cost Search

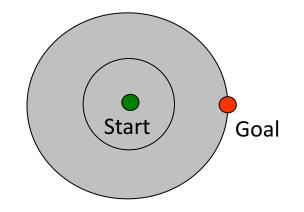
Strategy: expand lowest path cost

The good: UCS is complete and optimal!

The bad:

- Explores options in every "direction"
- No information about goal location





UCS

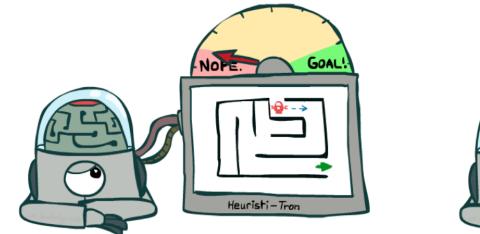
UCS: PacMan

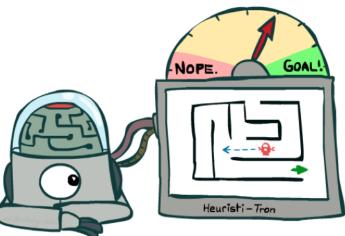
Can we do better?

This is the motivation behind *informed search*, which uses problem-specific knowledge to try and find solutions more efficiently

Search heuristics

- Key addition for informed search
- A trick that tells us how far from our goal we are from a given state
- Specifically: a *function* mapping from *states* to *reals* that encode proximity to goal

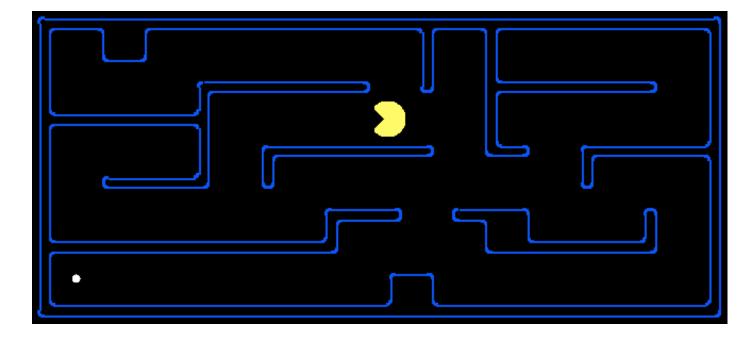


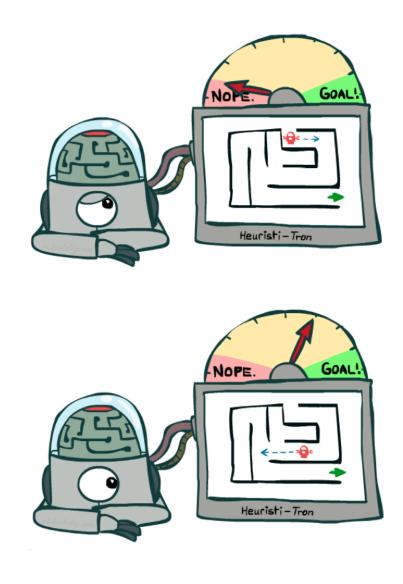


Search heuristics

A heuristic is

- A *function* that estimates how close a state is to a goal
- Designed for a particular search problem
- What might we use for PacMan (e.g., for pathing)?

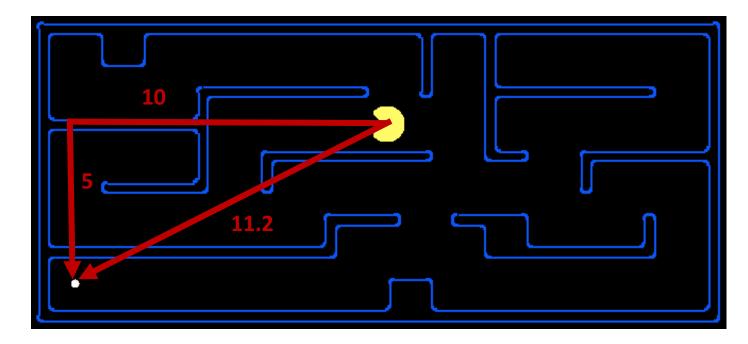


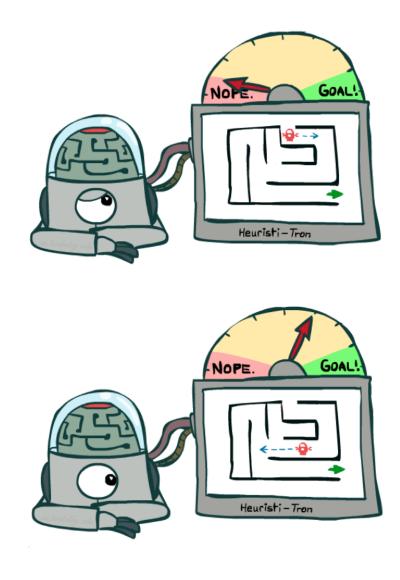


Search heuristics

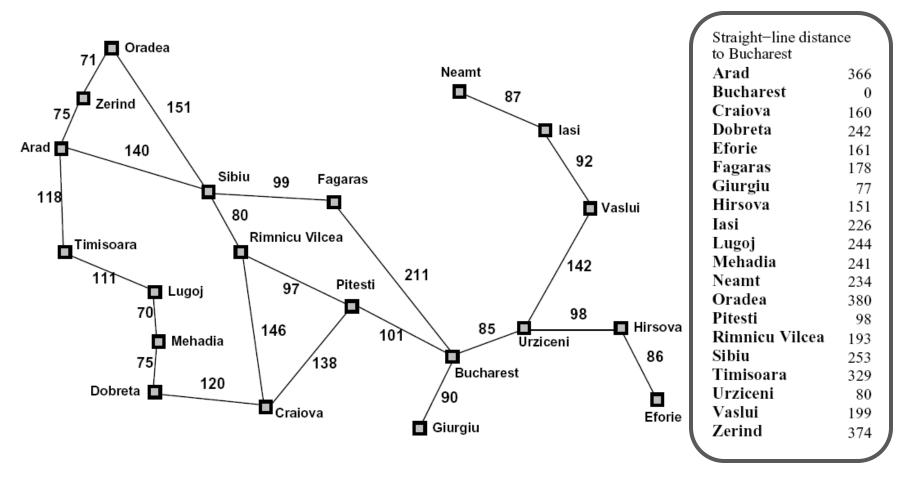
A heuristic is

- A *function* that estimates how close a state is to a goal
- Designed for a particular search problem
- What might we use for PacMan (e.g., for pathing)? Manhattan distance, Euclidean distance





Example: heuristic function

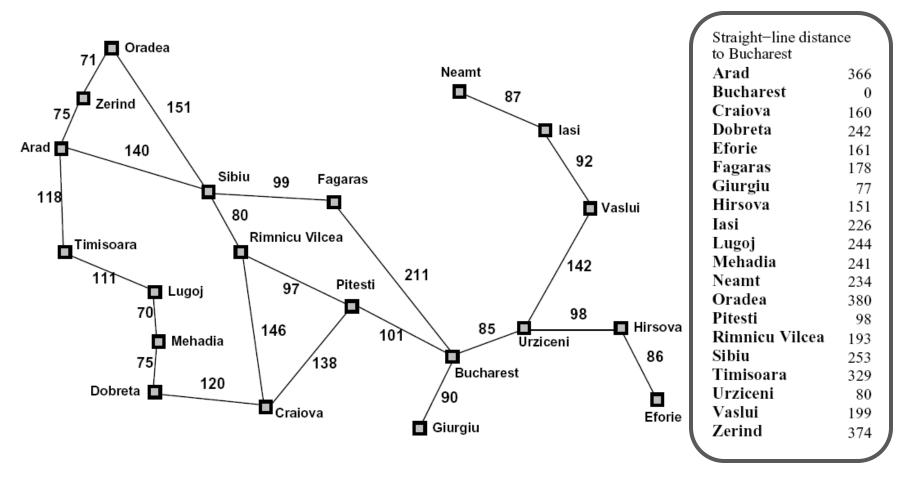


h(x)

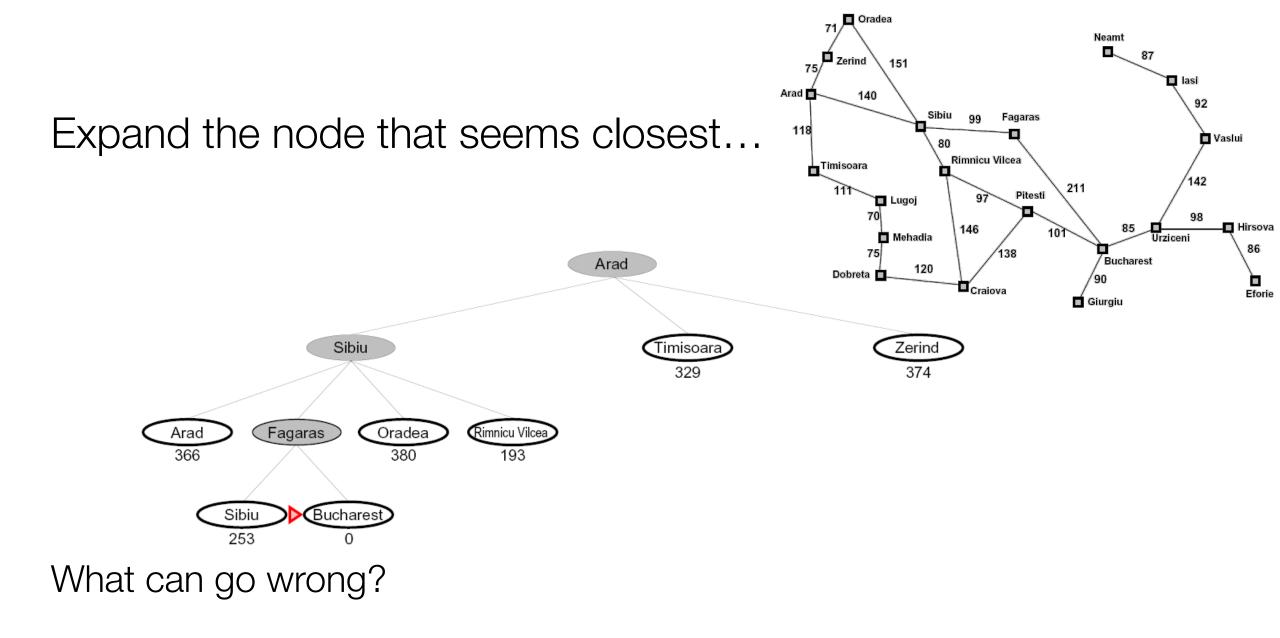
Great, but... what do we do with these things?



Example: heuristic function



h(x)



Greedy search

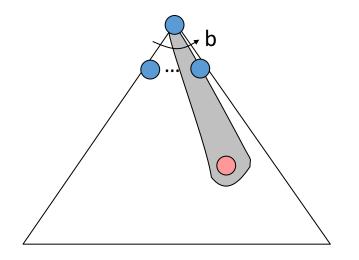
Strategy: expand a node that you think is closest to a goal state

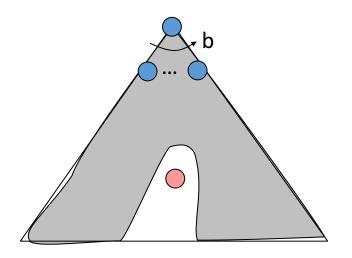
- Heuristic: estimate of distance to nearest goal for each state

A common case:

- Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS





Demo of Greedy

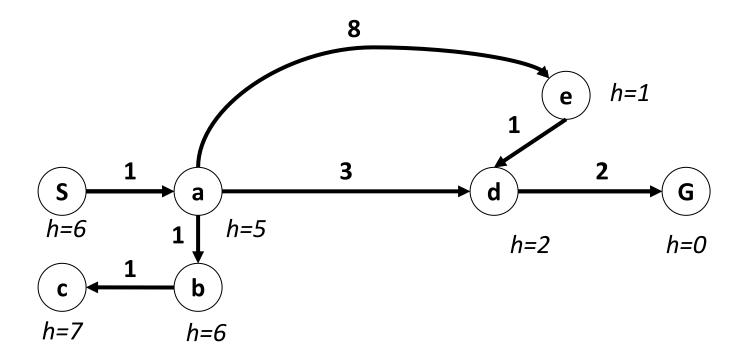
Demo of Greedy: PacMan

Greedy is only as good as your heuristic

A* search

Combining UCS and Greedy

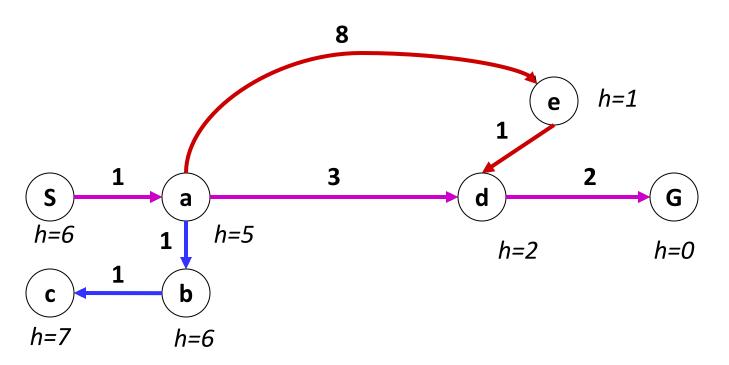
- Uniform-cost orders by (cumulative) path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

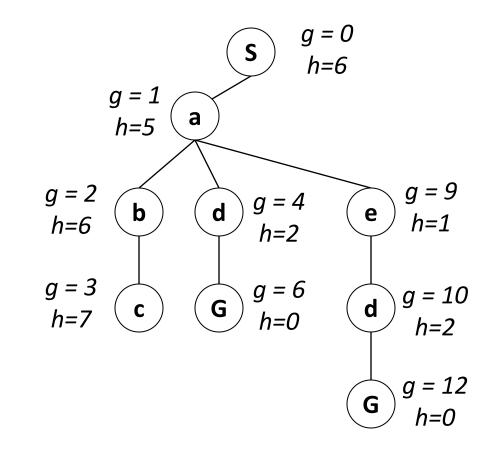


Example: Teg Grenager

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)





• A^* Search orders by the sum: f(n) = g(n) + h(n)

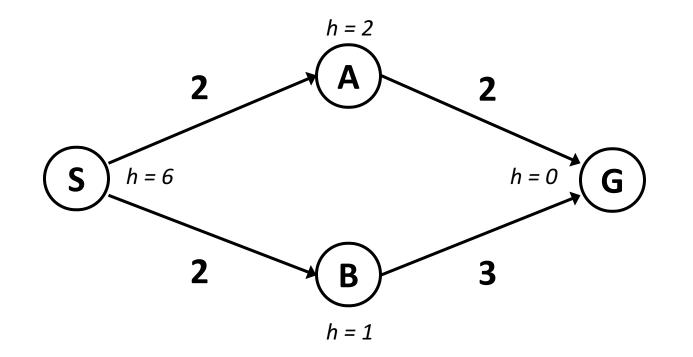
Example: Teg Grenager

Order node expansion in order of minimal f(n), where

f(n) = g(n) + h(n)

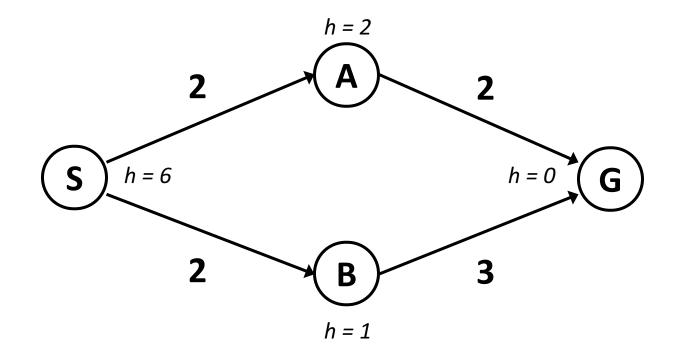
And g(n) is cost of path so far; h(n) is estimate (via heuristic function) of the remaining cost to goal

A note on enqueuing and heuristics



Let's run A*.

A note on enqueuing and heuristics

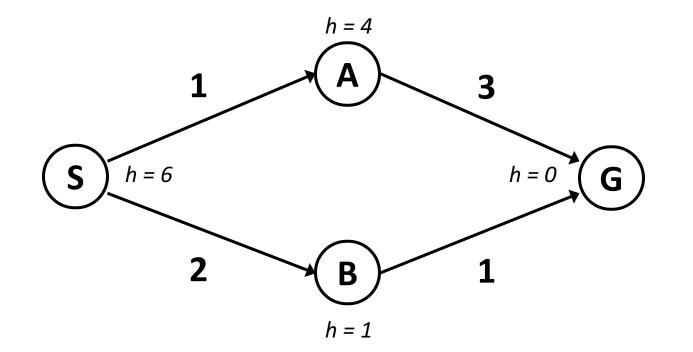


Let's run A*.

So we found the goal but the path there was suboptimal! What happened?

Important! stop when you dequeue a goal state; not when you enqueue it!

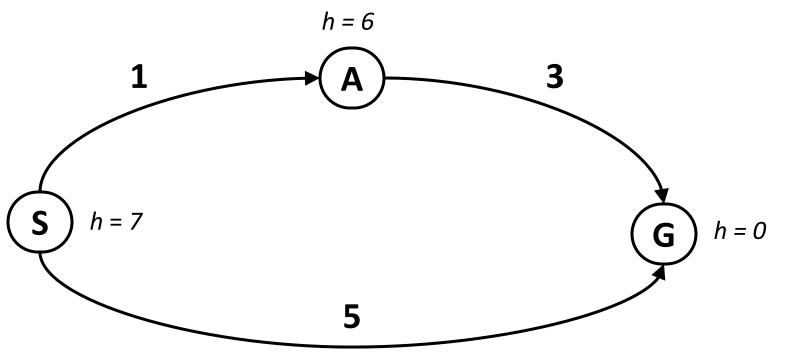
Exercise (you may work in small groups; include all names legibly on hand-in)



Starting from S, produce the set of nodes expanded to reach goal under:

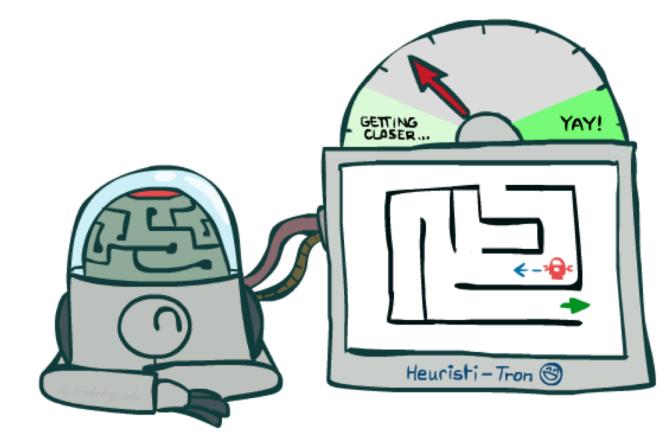
DFS
 UCS
 A* -- for A*, include a table with g(n), h(n) and their sum, f(n)

Is A* optimal?



- Oops. What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than or equal to actual costs!

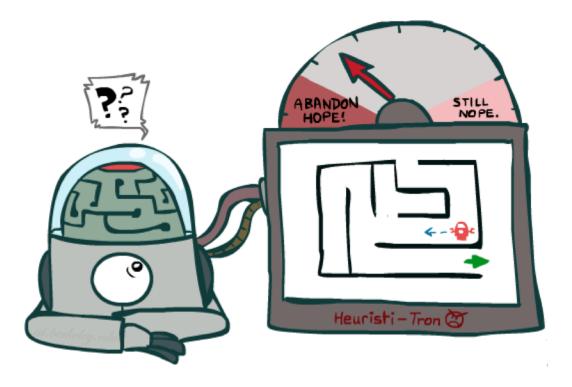
Admissible heuristics



Heuristic functions must be optimistic to be admissible.

Otherwise, a bad heuristic will prevent you from exploring possibly good areas of the graph.

Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe GETTING VAY!

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible heuristics, formally

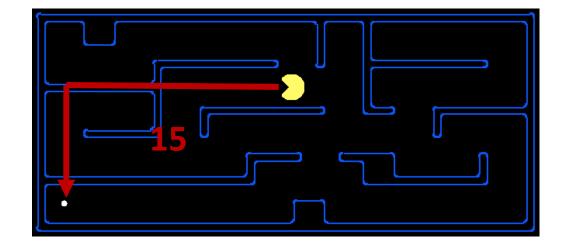
A heuristic *h* is *admissible* (optimistic) if:

 $0 \leq h(n) \leq h^*(n)$

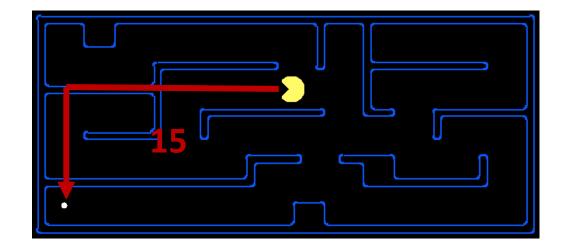
where $h^*(n)$ is the true cost to a nearest goal.

Coming up with admissible heuristics is most of what's involved in using A* in practice.

Manhattan distance for PacMan pathing admissible?



Manhattan distance for PacMan pathing admissible?



Q: would Euclidean distance be admissible? Would it be better or worse here?

Questions on A* before we continue?

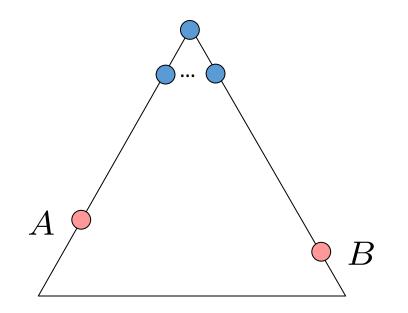
In which A earns its *. (On the optimality of A*)

Assume:

- 1. A is an optimal goal node
- 2. B is a suboptimal goal node
- 3. h is admissible

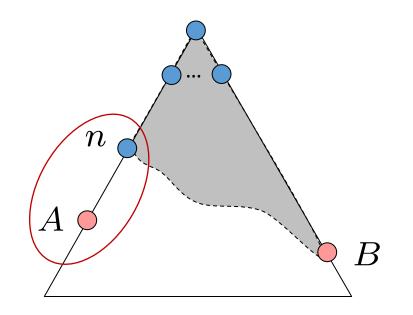
Claim: A will exit the fringe before B.

Note: this would imply general optimality.



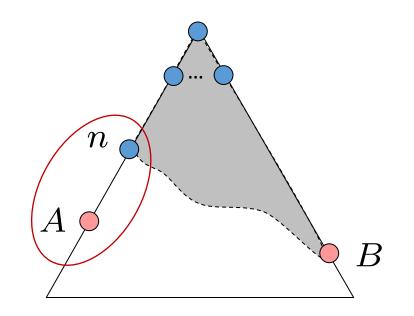
Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n will be expanded before B*



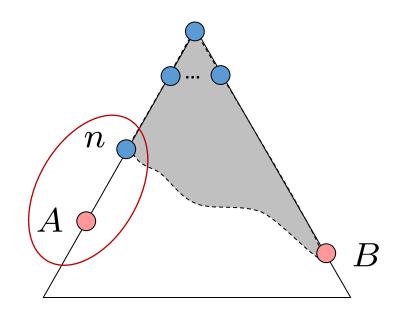
Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n will be expanded before B*
 - 1. f(n) is less than or equal to f(A)



Proof:

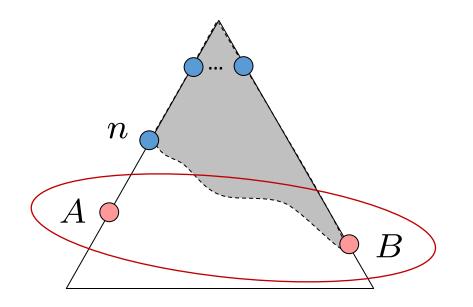
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n will be expanded before B*
 - 1. f(n) is less than or equal to f(A)



f(n) = g(n) + h(n)Definition of f-cost $f(n) \leq g(A)$ Admissibility of hg(A) = f(A)h = 0 at a goal

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n will be expanded before B*
 - 1. f(n) is less than or equal to f(A)
 - 2. f(A) is less than f(B)

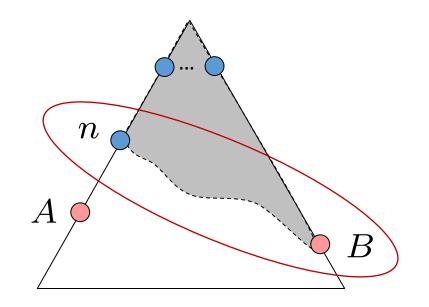


g(A) < g(B) E f(A) < f(B) h

B is suboptimal h = 0 at a goal

Proof:

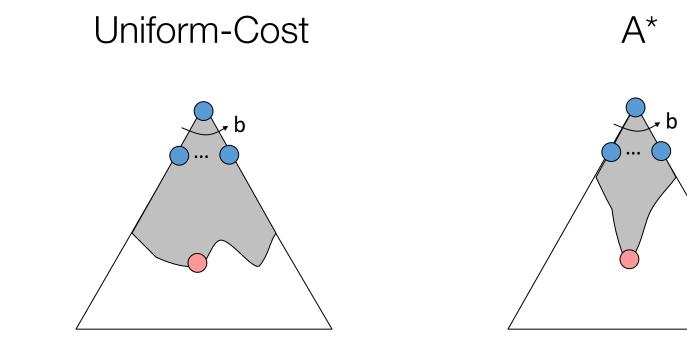
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n will be expanded before B*
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. n expands before B



 $f(n) \le f(A) < f(B)$

Punchline: A* is optimal, due to admissibility of h

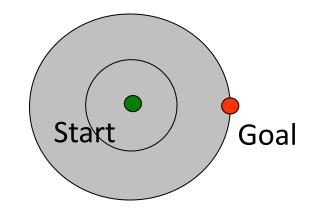
$UCS \vee A^*$

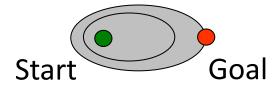


UCS vs A* Contours

• Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality



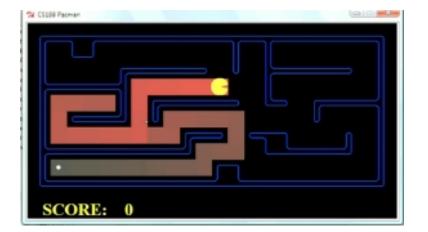


Video of Demo Contours: UCS

Video of Demo Contours: Greedy

Video of Demo Contours: A*

Video of Demo Contours, PacMan: A*



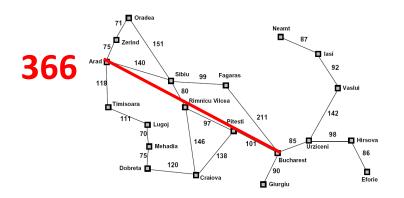
Greedy

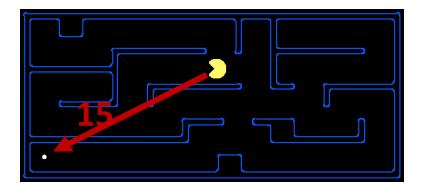
Uniform Cost

Designing heuristics

Creating admissible heuristics

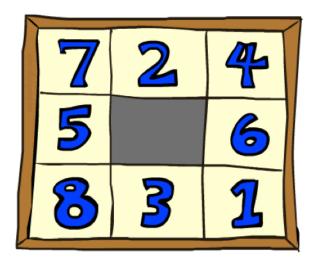
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available





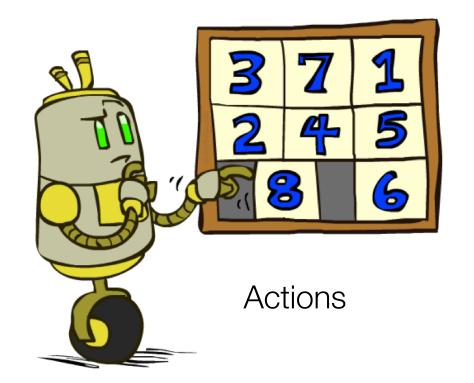
• Inadmissible heuristics are often useful too

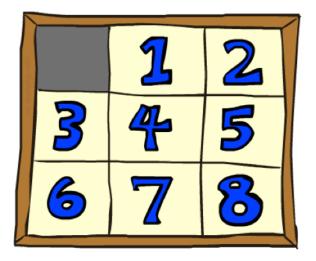
Example: 8 Puzzle



Start State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

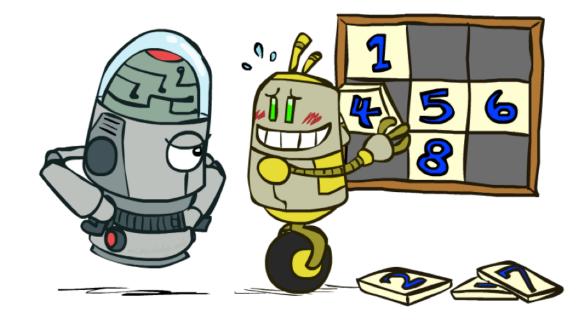


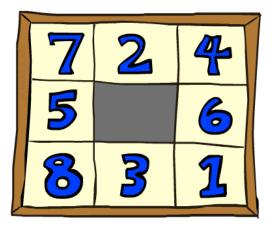


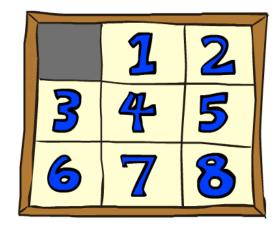
Goal State

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic







Start State

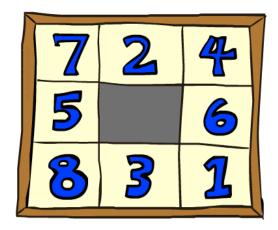
Goal State

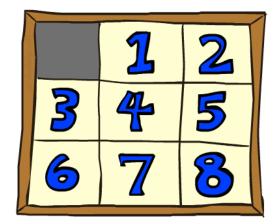
	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18





Start State

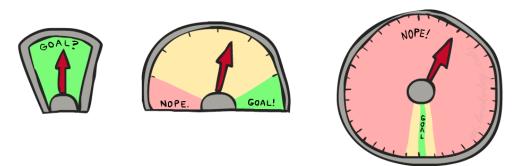
Goal State

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle II

How about using the actual cost as a heuristic?

- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?



With A*: a trade-off between quality of estimate and work per node

• As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial heuristics, dominance

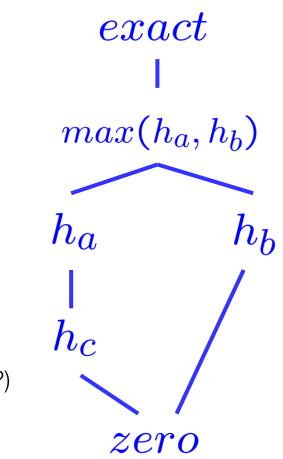
Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) > h_c(n)$

Heuristics form a semi-lattice: Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

Trivial heuristics

Bottom of lattice is the zero heuristic (what does this give us?) Top of lattice is the exact heuristic



Trivial heuristics, dominance

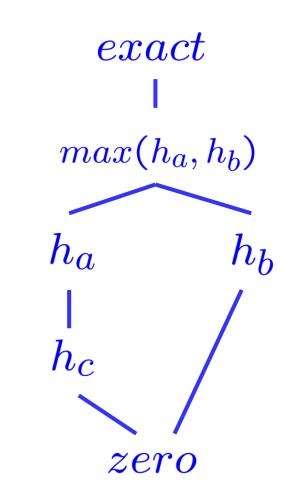
Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$

Heuristics form a semi-lattice: Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

Trivial heuristics

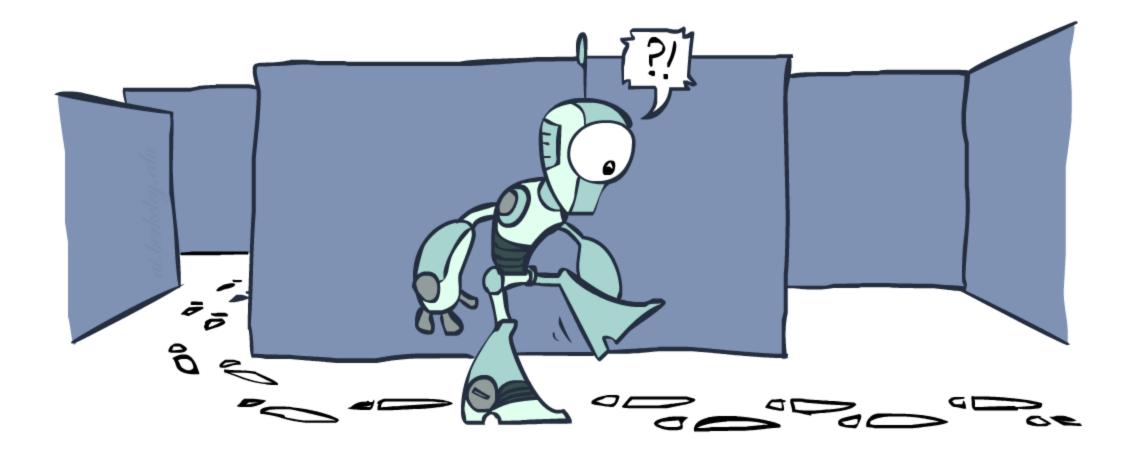
Bottom of lattice is the zero heuristic Top of lattice is the exact heuristic Q: what happens if we use h(n) = 0 for all n?



Learning heuristics

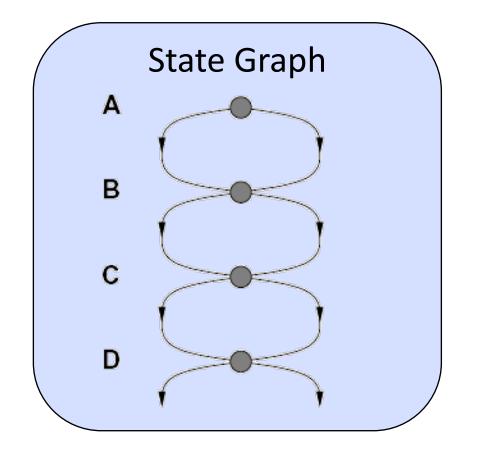
- Rather than hand-crafting heuristics, what if we let the machine *learn* a heuristic function?
- We'll come back to this once we cover machine learning

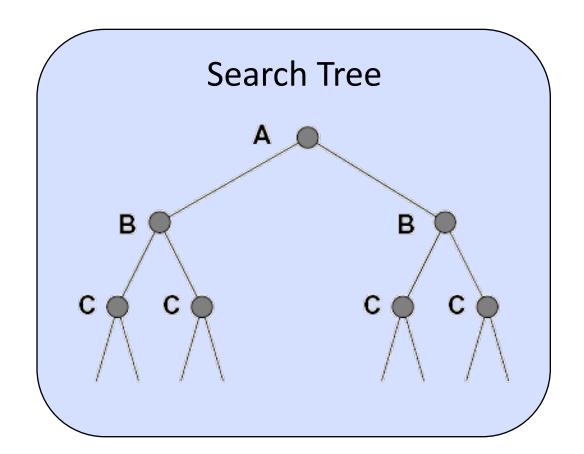
Graph search: don't retrace steps



Tree search: extra work!

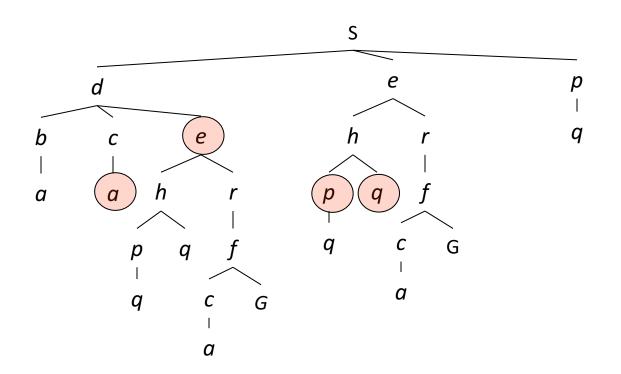
Failure to detect repeated states can cause exponentially more work.





Graph search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



Graph search

Idea: never expand a state twice

How to implement:

- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set

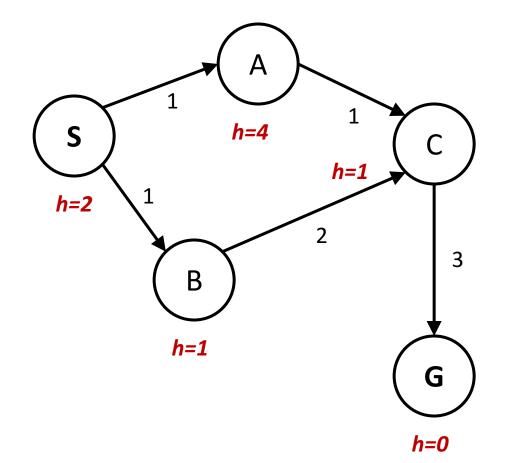
Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

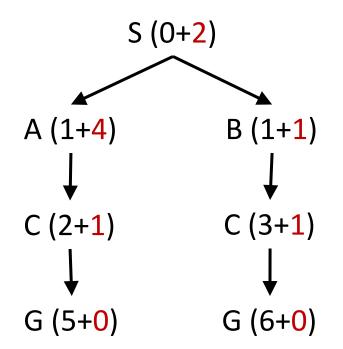
How about optimality?

A* Graph search gone wrong?

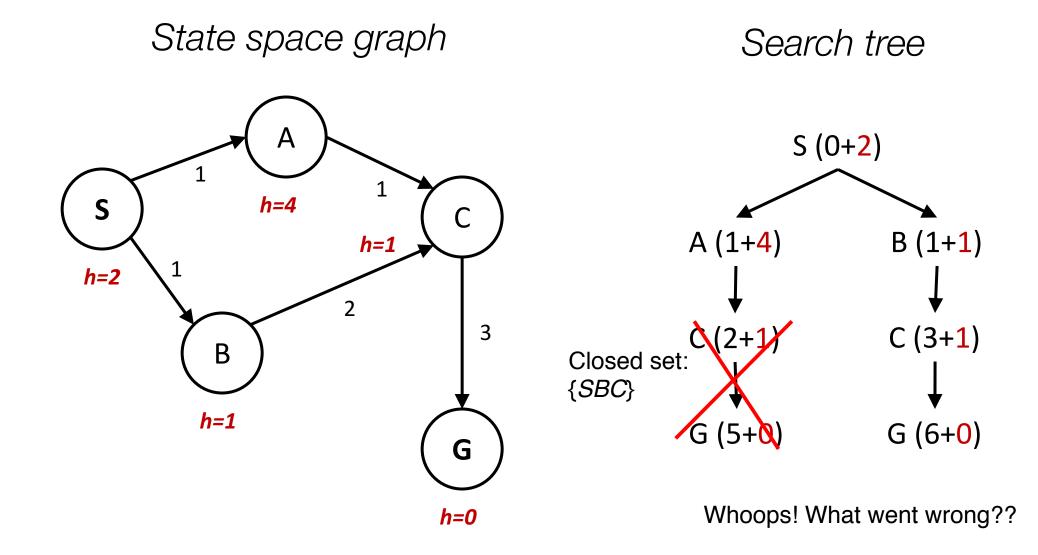
State space graph



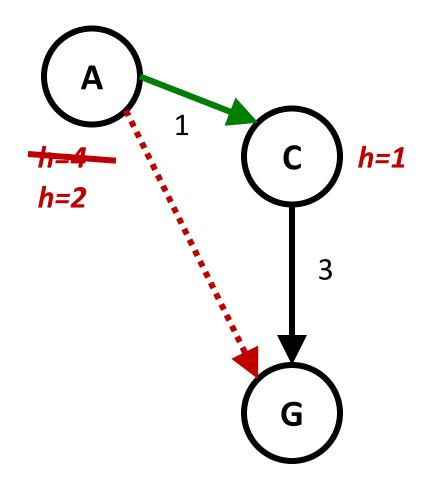
Search tree



A* Graph search gone wrong?



Consistency of heuristics



Main idea: estimated heuristic costs \leq actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \le actual cost from A to G$

• **Consistency**: heuristic "arc" $cost \le actual cost$ for each arc

 $h(A) - h(C) \le cost(A \text{ to } C)$

Consequences of consistency:

The f value along a path never decreases

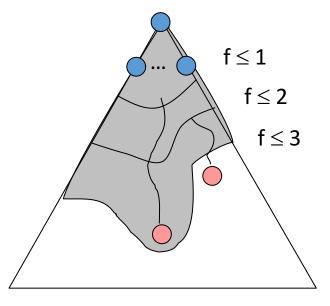
 $h(A) \le cost(A \text{ to } C) + h(C)$

A* graph search is optimal

Optimality of A* graph search

Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal



Optimality

Tree search:

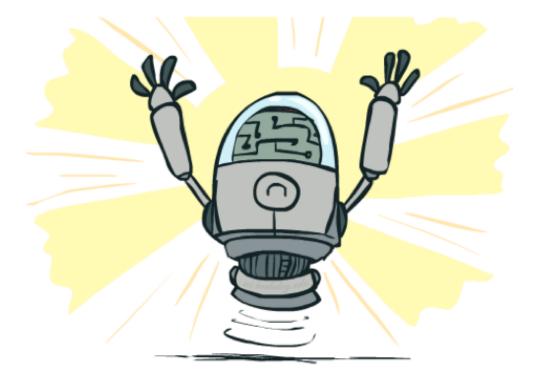
- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)

Graph search:

- A* optimal if heuristic is consistent
- UCS optimal (h=0 is consistent)

Consistency implies admissibility

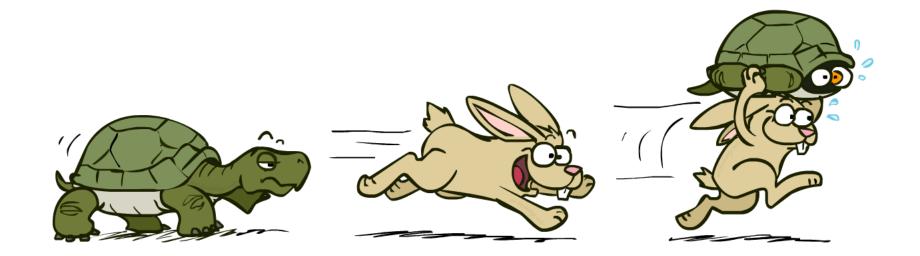
In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems



A* Summary

A* Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems



Tree search pseudo-code

```
function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXPAND(STATE[node], problem) do

fringe \leftarrow INSERT(child-node, fringe)

end

end
```

Graph search pseudo-code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE[node] is not in closed then
           add STATE[node] to closed
           for child-node in EXPAND(STATE[node], problem) do
               fringe \leftarrow \text{INSERT}(child-node, fringe)
           end
   end
```

That's all for today.

Up next time: Beyond "classical" search – dealing with constraints and stochastic environments

Be sure to make progress on the homeworks!