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Questions before we begin?

• On HW or anything else?



Today

Informed Search
• Heuristics
• Greedy Search
• A* Search

Graph Search



Last	time:	
(naive)	search



Search problem
• States (configurations of the world)
• Actions and costs
• Successor function (world dynamics)
• Start state and goal test

Recap
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Search problem
• States (configurations of the world)
• Actions and costs
• Successor function (world dynamics)
• Start state and goal test

Search tree
• Nodes: represent plans for reaching states
• Plans have costs (sum of action costs)

Search algorithm
• Systematically builds a search tree
• Chooses an ordering of the fringe (unexplored nodes)
• Optimal: finds least-cost plans

Recap



DFS, BFS, UCS



General tree search algorithm



The one queue
These search algorithms are the same except 
for fringe strategies

• Conceptually, all fringes are priority queues (i.e. 
collections of nodes with attached priorities)

• Practically, for DFS and BFS, you can avoid the 
log(n) overhead from an actual priority queue, by 
using stacks and queues



Uniform Cost Search
Strategy: expand lowest path cost

The good: UCS is complete and optimal!

The bad:
• Explores options in every “direction”
• No information about goal location Start Goal

…
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UCS



UCS: PacMan



Can we do better? 

This is the motivation behind informed search, which uses 
problem-specific knowledge to try and find solutions more 
efficiently



Search heuristics
• Key addition for informed search
• A trick that tells us how far from our goal we are from a given state
• Specifically: a function mapping from states to reals that encode proximity to goal



A heuristic is
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• What might we use for PacMan (e.g., for pathing)?

Search heuristics



A heuristic is
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• What might we use for PacMan (e.g., for pathing)? Manhattan 

distance, Euclidean distance
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Search heuristics



Example: heuristic function

h(x)



Great, but… what do we do with these things?



Greedy search



Example: heuristic function

h(x)



Expand the node that seems closest…

What can go wrong?



Greedy search

Strategy: expand a node that you think is closest to a 
goal state

- Heuristic: estimate of distance to nearest goal for each state

A common case:
- Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

…
b

…
b



Demo of Greedy



Demo of Greedy: PacMan



Greedy is only as good as your heuristic



A* search



Combining UCS and Greedy
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Example: Teg Grenager

• Uniform-cost orders by (cumulative) path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)



Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)
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Example: Teg Grenager
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A*, in sum

Order node expansion in order of minimal f(n), where

f(n) = g(n) + h(n)

And g(n) is cost of path so far; h(n) is estimate (via heuristic function) of the remaining 
cost to goal
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Let’s run A*.

A note on enqueuing and heuristics



A note on enqueuing and heuristics
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Let’s run A*.

So we found the goal but the path there was suboptimal! What happened?

Important! stop when you dequeue a goal state; not when you enqueue it!



Exercise (you may work in small groups; include all names legibly on hand-in) 
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Starting from S, produce the set of nodes expanded to reach goal under:

1. DFS 
2. UCS
3. A* -- for A*, include a table with g(n), h(n) and their sum, f(n)



Is A* optimal?

• Oops. What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than or equal to actual costs!
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Admissible heuristics



Heuristic functions must be optimistic to be admissible.
Otherwise, a bad heuristic will prevent you from exploring possibly 

good areas of the graph.



Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality 
by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans 
but never outweigh true costs



Admissible heuristics, formally

A heuristic h is admissible (optimistic) if:

where             is the true cost to a nearest goal.

Coming up with admissible heuristics is most of what’s involved in using 
A* in practice.



Manhattan distance for PacMan pathing admissible?

15



Q: would Euclidean distance be admissible? Would it be better or worse here?

15

Manhattan distance for PacMan pathing admissible?



Questions on A* before we continue?



In which A earns its *.
(On the optimality of A*) 



Optimality of A* Tree Search
Assume:
1. A is an optimal goal node
2. B is a suboptimal goal node
3. h is admissible

Claim: A will exit the fringe before B.

Note: this would imply general optimality.

…



Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

…

Optimality of A* Tree Search



Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)

…

Optimality of A* Tree Search



Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search



Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)

Optimality of A* Tree Search

B is suboptimal
h = 0 at a goal

…



Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

Optimality of A* Tree Search

…



Punchline: A* is optimal, due to admissibility of h



UCS v A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

• Uniform-cost expands equally in all “directions”

• A* expands mainly toward the goal, but does hedge 
its bets to ensure optimality

Start Goal

Start Goal



Video of Demo Contours: UCS



Video of Demo Contours: Greedy



Video of Demo Contours: A*



Video of Demo Contours, PacMan: A*



Greedy Uniform Cost A*



Designing heuristics



Creating admissible heuristics

• Most of the work in solving hard search problems optimally is in coming up with 
admissible heuristics

• Often, admissible heuristics are solutions to relaxed problems, where new actions 
are available

• Inadmissible heuristics are often useful too  

15
366



Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• How many successors from the start state?
• What should the costs be?

Start State Goal StateActions



8 Puzzle I
• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) =
• This is a relaxed-problem heuristic

8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



• What if we had an easier 8-puzzle where any 
tile could slide any direction at any time, 
ignoring other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) = 3	+	1	+	2	+	…	=	18

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start	State Goal	State

8 Puzzle II



How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?

With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but 

usually do more work per node to compute the heuristic itself

8 Puzzle II



Trivial heuristics, dominance
Dominance: ha ≥ hc if

Heuristics form a semi-lattice:
Max of admissible heuristics is admissible

Trivial heuristics
Bottom of lattice is the zero heuristic (what does this give us?)
Top of lattice is the exact heuristic



Trivial heuristics, dominance
Dominance: ha ≥ hc if

Heuristics form a semi-lattice:
Max of admissible heuristics is admissible

Trivial heuristics
Bottom of lattice is the zero heuristic 
Top of lattice is the exact heuristic
Q: what happens if we use h(n) = 0 for all n?



Learning heuristics

• Rather than hand-crafting heuristics, what if we let the machine learn a heuristic 
function? 

• We’ll come back to this once we cover machine learning



Graph search: don’t retrace steps



Failure to detect repeated states can cause exponentially more work.  

Search	TreeState	Graph

Tree search: extra work!



Graph search

In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Idea: never expand a state twice

How to implement: 
• Tree search + set of expanded states (“closed set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been expanded 

before
• If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?

Graph search



A* Graph search gone wrong?
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A* Graph search gone wrong?
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Closed set:
{SBC} 

Whoops! What went wrong??



Consistency of heuristics

Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:

The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal
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Optimality of A* graph search
Sketch: consider what A* does with a consistent heuristic:

• Fact 1: In tree search, A* expands nodes in increasing total 
f value (f-contours)

• Fact 2: For every state s, nodes that reach s optimally are 
expanded before nodes that reach s suboptimally

• Result: A* graph search is optimal

…

f	£ 3

f	£ 2

f	£ 1



Optimality
Tree search:

• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h=0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be 
consistent, especially if from relaxed problems



A* Summary



A* Summary
• A* uses both backward costs and (estimates of) forward costs

• A* is optimal with admissible / consistent heuristics

• Heuristic design is key: often use relaxed problems



Tree search pseudo-code



Graph search pseudo-code



That’s all for today. 

Up next time: Beyond “classical” search – dealing with constraints 
and stochastic environments

Be sure to make progress on the homeworks!


