
Search I

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Quick announcements

We now have a piazza site (linked to on homepage)
• You should have received an email about this

Instructions for setting up a git account are available and were sent out; this is
how you will turn in assignments!

• If there is interest, Rohan (our TA) will run a crash course in the (very) basics of git –
enough so that you can turn in the assignments!

Questions before we begin?

Search I
• Agents that Plan Ahead

• We will treat plans as
search problems

• Uninformed Search Methods
- Depth-First Search
- Breadth-First Search
- Uniform-Cost Search

“Reflex agents”
• Reflex agents:

- Choose action based on current percept only
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions

• Can a reflex agent be rational?

Rational vacuum cleaner

The trouble with reflex agents

Problem solving agents

Goal-based: want to accomplish some goal, e.g., maximize utility or similar
performance measure

Problem solving agents

Goal-based: want to accomplish some goal, e.g., maximize utility or similar
performance measure

Simple problem-solving agents search for sequences of actions that will realize
their goals
- This entails evaluating ‘future’ actions

Problem solving agents

Goal-based: want to accomplish some goal, e.g., maximize utility or similar
performance measure

Simple problem-solving agents search for sequences of actions that will realize
their goals
- This entails evaluating ‘future’ actions

Assuming S discrete states, finding the “best” sequence of T actions is non-trivial.
Doing this brute force would require evaluating ST sequences
- Motivates use of clever search algorithms

Planning agents

Planning agents:
• Ask “what if”
• Decisions based on (hypothesized)

consequences of actions
• Must have a model of how the world evolves

in response to actions
• Must formulate a goal (test)
• Consider how the world WOULD BE

Optimal vs. complete planning

Planning vs. replanning

Formalizing search problems

Search problems
A search problem consists of:

- A state space

- A successor function
(with actions, costs)

- A start state and a goal test

A solution is a sequence of actions (a plan) that transforms the start state to
a goal state

“N”, 1.0

“E”, 1.0

• Most of the work will often be spent formalizing your task into a search problem (designing
the state space representation, successor functions and so on). Is it worth it?

The advantage of abstraction

• Most of the work will often be spent formalizing your task into a search problem (designing
the state space representation, successor functions and so on). Is it worth it?

• Yes. Because once we have formalized our problem in this way, we can hand it to off-the-
shelf search algorithms to find a solution!

The advantage of abstraction

Search problems are models

Example from the text: traveling in Romania

State space
- Cities

Successor function
- Roads: Go to adjacent city with cost

= distance

Start state
- Arad

Goal test
- Is state == Bucharest?

Solution?

Another example

States?

Actions?

Goal?

World states v. search states

Problem: Pathing
• States: (x,y) location
• Actions: NSEW
• Successor: update location only
• Goal test: is (x,y)=END

Problem: Eat-All-Dots
• States: {(x,y), dot booleans}
• Actions: NSEW
• Successor: update location and possibly

a dot boolean (if we eat food)
• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State space sizes?

World state:
• Agent positions: 120 (assume 10x12 grid)
• Food (dots) count: 30
• Ghost positions: 12
• Agent facing: NSEW

How many
• World states?

120 x 230 x 122 x 4
• States for pathing?

120
• States for eat-all-dots?

120 x 230

One more example: safe passage

Problem: eat all dots while keeping the ghosts perma-scared
What does the state space have to specify?

• (agent position, dot booleans, power pellet booleans, remaining scared time)

State space graphs and search trees

State space graph: A mathematical representation
of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successor states (action results)
• The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only once!

We can rarely build this full graph in memory (it’s too
big), but it’s a useful idea/abstraction

State space graphs

State space graphs

State space graph: A mathematical representation
of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successor states (action results)
• The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only once!

We can rarely build this full graph in memory (it’s too
big), but it’s a useful idea/abstraction

S

G

d

b

p q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

Search trees

A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

Start state / root

Possible futures

State space graphs vs. search trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Each node in
the search tree
is an entire path

in the state
space graph.

Search treeState space graph

Pop Q: state space graphs vs. search trees

S G

b

a

consider this 4-state graph

Important: Lots of repeated structure in the search tree!

how big is its search tree (from S)?

This brings us to tree search

Search example: Romania

Searching with a search tree

General strategy:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible

A bit more formally

Important ideas:
• Fringe (things that may yet work)
• Expansion (picking nodes out of fringe to expand)
• Exploration strategy (how to pick from the fringe)

Main question: which fringe nodes to explore?

Example: tree search

S

G

d

b

p q

c

e

h

a

f

r

How shall we search?
Today we will discuss a few simple strategies for node expansion: Depth First
Search (DFS) and Breadth First Search (BFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy expand a deepest node first
Implementation Fringe is a stack (LIFO)

Search algorithm properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1	node
b	nodes

b2 nodes

bm nodes

m	tiers

Search algorithm properties

In sum: DFS properties

…
b

1	node
b	nodes

b2 nodes

bm nodes

m	tiers

What nodes does DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

Is it complete?
• m could be infinite, so only if we prevent cycles (more later)

Is it optimal?
• No, it finds the “leftmost” solution, regardless of depth or cost

Breadth-First Search (BFS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy expand a shallowest node first
Implementation Fringe is a FIFO queue

Breadth-First Search (BFS)

What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let the depth of the shallowest solution be s
• Search takes time O(bs)

How much space does the fringe take?
• Has roughly the last tier, so O(bs)
• So in ”worst case” this is O(bm)

Is it complete?
• s must be finite if a solution exists, so yes!

Is it optimal?
• Only if action costs are all 1 (more on costs later)

…
b

1	node
b	nodes

b2 nodes

bm nodes

s	tiers

bs nodes

Breadth-First Search (BFS) properties

DFS vs BFS

DFS vs BFS

1. When will BFS outperform DFS?
2. When will DFS outperform BFS?

Some examples

BFS or DFS?

DFS

Hybrid approach: iterative deepening

…
b

Idea: get DFS’s space advantage with BFS’s time /
shallow-solution advantages

• Run a DFS with depth limit 1. If no solution…
• Run a DFS with depth limit 2. If no solution…
• Run a DFS with depth limit 3. …..

Isn’t that wastefully redundant?
• Generally most work happens in the lowest level searched,

so not so bad!

Cost-sensitive search

BFS finds the shortest path in terms of number of actions.
But it does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search (UCS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy expand a cheapest node first:

Fringe is a priority queue (priority:
cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2

Uniform Cost Search (UCS)

…

Uniform Cost Search (UCS) properties
What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• Assume optimal solution costs C* and all arcs cost at least e. How

deep do we explore???
• “effective depth” is roughly C*/e
• So we’d expand O(bC*/e) nodes (exponential in effective depth)

How much space does the fringe take?
• Has roughly the last tier, so O(bC*/e)

Is it complete?
• Assuming best solution has a finite cost and minimum arc cost is

positive, yes!

Is it optimal?
• Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c	£ 3

c	£ 2

c	£ 1

Uniform Cost Issues
• Remember: UCS explores increasing cost contours

• The good: UCS is complete and optimal!

• The bad:
- Explores options in every “direction”
- No information about goal location

• We’ll fix that soon! Start Goal

…

c	£ 3
c	£ 2

c	£ 1

The one queue
These search algorithms are the same except
for fringe strategies

• Conceptually, all fringes are priority queues (i.e.
collections of nodes with attached priorities)

• Practically, for DFS and BFS, you can avoid the
log(n) overhead from an actual priority queue, by
using stacks and queues

The one queue
These search algorithms are the same except
for fringe strategies

• Conceptually, all fringes are priority queues (i.e.
collections of nodes with attached priorities)

• Practically, for DFS and BFS, you can avoid the
log(n) overhead from an actual priority queue, by
using stacks and queues

Search and models
Search operates over models of the world

• The agent doesn’t actually try all the
plans out in the real world!

• Planning is all “in simulation”
• Your search is only as good as your

models…

That’s it for today!

Next week: smarter search; A* and beyond

HW1 is available on the website -- start early! Due in two weeks.

Rohan has office hours Thursdays: 3-5p in 462 WVH. I have office hours
Tuesdays after class (476 WVH).

