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ABSTRACT
Comparative effectiveness reviews (CERs), a central method-
ology of comparative effectiveness research, are increasingly
used to inform healthcare decisions. During these system-
atic reviews of the scientific literature, the reviewers (MD-
methodologists) must screen several thousands of citations
for eligibility according to a pre-specified protocol. While
previous research has demonstrated the theoretical poten-
tial of machine learning to reduce the workload in CERs,
practical obstacles to deploying such a system remain. In
this article, we describe work on an end-to-end, interactive
machine learning system for assisting reviewers with the te-
dious task of citation screening for CERs. Specifically, we
present Abstrackr, our open-source annotation tool. In
addition to allowing reviewers to designate citations as ‘rel-
evant’ or ‘irrelevant’ to the review at hand, Abstrackr
facilitates communicating other information useful to the
classification model, such as terms that are suggestive of the
relevance (or irrelevance) of a citation. The tool also records
the time taken to screen citations, over which we conducted a
time-series analysis to derive an annotator model. Using this
model, we found that both the order in which the citations
are screened and the length of each citation affect annotation
time. We propose a strategy that integrates labeled terms
and timing data into the Active Learning (AL) framework,
in which an algorithm selects citations for the reviewer to
label. We demonstrate empirically that this additional infor-
mation can improve the performance of the semi-automated
citation screening system.
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1. INTRODUCTION
Comparative effectiveness reviews (a type of systematic

review) are increasingly used to inform decisions at all lev-
els of health care, from the bedside to the adoption of na-
tional policies. The cornerstone of Evidence-based Medicine,
comparative effectiveness and other systematic reviews are
unbiased and comprehensive analyses of published research
on well-formulated questions that rigorously follow a prede-
fined protocol. Part of the process is to identify and analyze
all relevant research that fulfills protocol criteria. To this
end, reviewers conduct extensive literature searches (e.g., via
PubMed), that typically return several thousand citations,
of which only a few dozen will eventually meet eligibility
criteria. To assess eligibility, reviewers (generally physician-
methodologists, and hence expensive) must manually peruse
all of the retrieved citations, designating each as either ‘el-
igible’ or ‘ineligible’ for the review at hand. We refer to
this process as citation screening. Citation screening is la-
borious; it takes approximately forty hours of uninterrupted
work time to manually screen 5,000 citations, which is the
size of a typical review. Larger reviews are not uncommon;
the Tufts Evidence-based Practice Center once screened over
33,000 abstracts for a systematic review [1, 2, 3].

Mitigating this workload is naturally an appealing propo-
sition. In previous work we re-formulated the problem as
a binary classification task and trained a classifier to auto-
matically screen citations [16]. Classifiers are induced, or
‘trained’, over a set of labeled instances.1 In our scenario,
the training data comprise citations labeled by a reviewer
as either ‘relevant’ or ‘irrelevant’, and the aim is to induce a
discriminative model that can automatically exclude irrele-
vant citations, while maintaining high sensitivity to relevant
articles. False negatives (i.e., excluded citations that in fact
meet the inclusion criteria) are costly because they can jeop-
ardize the comprehensiveness and validity of the conducted
review [16].

Our strategy involves training a Support Vector Machine
(SVM) classifier interactively, using the Active Learning (AL)
framework. In AL, the classifier requests labels for those in-
stances likely to be most useful in inducing a good classifier
[10]; this is in contrast to the typical, passive approach to
classifier induction, in which a set of training data is selected
at random. The intuition is that by selecting a small, infor-

1This paper uses the terms ‘instance’ and ‘example’ inter-
changeably. In this work, they refer to individual biomedical
citations/documents; more generally they denote individual
representations of the objects being classified.



mative set of labeled data with which to train a classifier, one
can induce a better predictive model with less effort com-
pared to the passive approach. AL is an attractive paradigm
for machine learning applied to biomedical tasks, as anno-
tation costs are often high (specialized experts tend to be
expensive and busy). Furthermore, this requisite level of
domain expertise rules out low-cost out-sourced annotation
solutions, such as Amazon Turk.2

The contributions of this work are as follows. First, we de-
scribe an open-source annotation tool currently being used
at the Tufts EPC for the citation screening task. We ar-
gue that such tools are imperative in deploying real-world
AL systems. Indeed, despite substantial empirical successes
(e.g., [9, 13]), AL has not yet achieved wide adoption in
practice – one reason being a lack of available annotation
tools [12]. Our tool also provides an interface for the ex-
pert to label terms, i.e., indicate words or n-grams useful in
predicting a given document’s class. Second, we use empir-
ical labeling data (collected with the aforementioned tool)
to develop a novel labeling time prediction model. Finally,
we incorporate the predicted time it will take to label an in-
stance into the AL query function. We demonstrate that this
approach outperforms more traditional ‘greedy’ AL strate-
gies, which tacitly assume a uniform per-instance labeling
cost. In other words, when the (predicted) time to label an
instance is factored into the decision of which examples to
have the expert label, a better model can be induced in the
same amount of time (i.e., at the same cost).

In the following section, we briefly review the AL frame-
work, as well as some related work in applied AL. We also
present our AL algorithm, which exploits labeled terms, or
words and n-grams that have been designated as being in-
dicative of a document being relevant or irrelevant. In Sec-
tion 3, we present our open-source annotation tool. In Sec-
tion 4, we discuss our approach to modeling annotator la-
beling time, and in Section 5 we give our algorithm for in-
corporating this into the AL framework. We present our
experimental setup and our results in Section 6. Finally, we
end with conclusions and future work in Section 7.

2. PRELIMINARIES

2.1 Active Learning to Mitigate Workload
Before deployment, a classifier must first be trained with a

set of labeled examples. AL is an increasingly popular tech-
nique for mitigating the amount of work required to induce
a classifier (for a recent survey, see [10]). AL proceeds itera-
tively; during each round of training, the learning algorithm
uses a querying function to select an instance for labeling by
the expert. The idea is that by choosing the training data
cleverly, rather than at random, a better classifier can be
induced with less work.

We have shown in previous work [15, 16] that AL can sub-
stantially reduce the burden on reviewers conducting com-
parative effectiveness reviews in terms of the number of doc-
uments that must be manually screened. As mentioned, an
important caveat in the citation screening problem is that
sensitivity (recall) with respect to the set of relevant arti-
cles is more important than specificity; in other words, false
negatives are expensive while false positives are relatively
cheap. An additional challenge is the severe class imbal-

2http://www.mturk.com

ance, as there are far fewer relevant than irrelevant articles
(typically only around 5-10% of the documents are relevant).
We found that uncertainty sampling, in which the model re-
quests a label for the example it is least certain about, tends
to induce classifiers with high accuracy but low sensitivity.

To remedy this, we developed a new AL strategy that
incorporates labeled features, which in our case are terms,
i.e., words or n-grams, designated by the reviewer as in-
dicative of a document being either eligible or ineligible;
we refer to these as positive and negative terms, respec-
tively. For example, in a systematic review concerning ge-
netic associations with Chronic Obstructive Pulmonary Dis-
ease (COPD), the reviewer indicated that ‘allele’ and ‘copd’
were positive whereas ‘mice’ and ‘cell lines’ were negative
(the review included only human studies). We note that our
Abstrackr tool, presented in Section 3 provides an inter-
face for labeling terms. Denoting the set of positive terms
by PF , the set of negative terms NF , and the total count of
labeled terms in a document as Nd, we can score documents
as follows:
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where Id(w) is indicator function which is 1 if w is in d and
0 otherwise. Note that we add 1 to both the negative and
positive sums, to avoid taking the log of 0. Intuitively, if the
ratio in Equation 1 is large, it should be obvious as to which
category this document belongs, because it must contain
many labeled terms, and a preponderance of these belong
to a particular class. In this article, we use the scores cal-
culated via Equation 1 as a measure of the value, or utility,
of acquiring a label for a particular document. We reiterate
that any appropriate score could be substituted here (e.g.,
one could use a measure of uncertainty); but we have found
that this score outperforms other baseline strategies, such
as uncertainty sampling, for our problem.

Once unlabeled documents are scored, the natural (greedy)
approach is to have the expert label the highest scoring cita-
tion. However in Section 6 we demonstrate that the strategy
of dividing the scores assigned to unlabeled citations by the
predicted time it will take to annotate them outperforms
this baseline.

2.2 Related Work on Deployed AL
Historically, work in AL has made a number of unreal-

istic assumptions. It is generally assumed that there is a
single, infallible oracle and that labeling instances incurs
some constant cost; hence the usual plot in AL research,
which scatters some measure of the induced models’ perfor-
mance versus the number of training labels provided, rather
than the actual annotation time. Increasingly, however, fo-
cus has turned to relaxing these assumptions. For example,
Dommez and Carbonell [6] have developed a framework for
cost-sensitive AL with multiple, imperfect labelers. Their
model also allows for varying cost, and they demonstrated
its potential over simulated data.

Recently, researchers have begun to investigate empirical
(real-world) annotation times. Arora et al. [4] demonstrated
the feasibility of estimating the cost to label instances, even
across different annotators, in a movie review classification



task. As features, they incorporated information such as
the word count (i.e., length) of a movie review. Elsewhere,
Baldridge and Palmer [5] emphasized the importance of tak-
ing annotator cost and expertise into consideration. They
demonstrated that the efficacy of AL can be dramatically
different depending on what measure of cost is used (e.g.,
number of labels provided versus the real annotation time),
highlighting the need for cost-sensitive AL in real-world sys-
tems.

Most similar to our work here, Settles et al. [11] demon-
strated that knowing the (true) annotation time can theoret-
ically increase AL performance, though the model they used
for predicting annotation times was not sufficient to improve
performance – thus resulting in a negative result for their ap-
plication. They used the same Return-on-Investment (ROI)
strategy recently advocated by Haertel et al. [7], in which
the utility computed for an unlabeled example (a measure
of its informativeness) is scaled by the the predicted time
it will take to label it. Haertel et al. demonstrated that
factoring in predicted cost can improve AL performance in
a Part of Speech (POS) tagging task. They note that the
difficult part is estimating cost and utility functions. Here,
we present such functions for the citation screening task,
achieving substantial improvements over an already strong
AL baseline.

3. ABSTRACKR: AN OPEN-SOURCE AN-
NOTATION TOOL

We now present our open-source annotation tool, which
we call Abstrackr3 (the name is an amalgamation of ab-
stract and tracker).

A screenshot of the primary tool interface is shown in Fig-
ure 1. The interface comprises a main window that displays
the current abstract text, and a ‘control panel’ on the bot-
tom, which includes buttons to facilitate annotation. The
buttons on the bottom right of the control panel allow the
reviewer to ‘accept’ or ‘reject’ the current abstract. To the
left of those buttons is a navigational component, which al-
lows the user to iterate over citations or jump to a particular
study. Finally, at the bottom left are four buttons that fa-
cilitate term annotation; one ‘thumbs up’ corresponds to
a weakly positive term, while two ‘thumbs up’ indicates a
term or n-gram strongly indicative of the positive class (rel-
evant articles). Notice that the tool highlights those terms
that have been labeled by the user; negative terms are high-
lighted red and positive terms are highlighted yellow.

In addition to facilitating annotation, Abstrackr records
labeling time, which we used to model annotation times (see
the following section). In Section 6, we show that this model
is sufficient to predict labeling times online during AL, and
these predicted times can be used to increase the perfor-
mance of the classifier. All information (annotations, la-
beling times, etc.) are stored in a SQLite database, and
thus can readily be queried. The tool itself is written in the
Python programming language, using the QT Graphic User
Interface (GUI) library, and it is therefore cross-platform.4

Aside from providing an interface to annotate documents,

3The code for the Abstrackr tool is available via github
at: http://github.com/bwallace/citation-screening/, under
the UI subdirectory.
4However, at the moment we’ve only tested it on Windows
and Mac OS X.
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Figure 2: Document labeling time (in seconds) ver-
sus the order in which it was labeled.

Abstrackr provides a natural method of incorporating la-
beling assignments and our AL algorithm directly into the
software, allowing for easy interaction between the human
and the machine learning algorithm (although this is presently
done offline). That is, we envision a team of experts using
the tool in tandem, talking to a central database; the pro-
gram will decide which citations to assign to whom at each
step in the annotation process, taking into consideration the
terms highlighted thus far, as well as the currently labeled
documents.

4. MODELING EXPERTS
It has been shown that scaling the expected value of at-

taining a label for a particular instance by the cost (in terms
of time) of acquiring said label can improve the performance
of AL [11, 7]. However, deriving a statistical model to pre-
dict how long it will take to label a given example remains
a challenge [4]. Indeed, Settles et al. demonstrated that in
certain cases, if the true time to annotate were known then
performance could be improved; however their model was
inadequate in predicting labeling times, and thus did not
improve performance.

We hypothesized that, on average, annotation would take
longer in the beginning of the screening, while the reviewer
familiarizes him or herself with the topic and screening crite-
ria, and would gradually decrease thereafter. To the best of
our knowledge, no previous work on predicting annotation
times has considered annotator learning rate. Furthermore,
in line with Settles et al. [11], we assume that longer doc-
uments would take longer to annotate. These assumptions
were borne out by the empirical data collected from a real-
world citation screening project.

Figure 2 shows the relationship between mean annotation
time and the order in which abstracts were reviewed. This
relationship is shown in the smoothed dashed line, obtained
from locally weighted linear regression with a sliding win-
dow of width 80% of the observations (lowess smoothing).
The clear downward trend is intuitively agreeable; the an-
notator is learning as they label documents, and their speed
thus increases as they become more familiar with the task.
Moreover, as evidenced by the plot, their learning rate is
more pronounced at the start of the task, and tapers off



Figure 1: The abstrackr annotation tool.

toward the end. There is also clear correlation between doc-
ument length and labeling time, as shown in Figure 3, which
plots the association between document length and annota-
tion time. In both plots, we do not show points for 106
documents (out of 4,751) that had associated labeling times
longer than 100 seconds. These were considered outliers (it’s
likely that the reviewer became distracted while the tool was
displaying these abstracts), and they made the plots difficult
to read.

In addition to order and document length, we also con-
sidered the correlation between model uncertainty, i.e., dis-
tance from the induced SVMs’ hyperplane, and labeling
time. It has been conjectured elsewhere that examples that
the model is uncertain about may be in some sense difficult
and thus take longer to label [6]. To test this, we induced
a model over all of the labeled data, and then computed
the distance of each document to the separating hyperplane,
a proxy for uncertainty (examples near the hyperplane are
those the model is uncertain about [13]). As shown in Figure
4, a correlation between model uncertainty and labeling time
exists, but is rather weak compared to the observed corre-
lation between, e.g., document length and labeling time. In
particular, Spearman’s correlation coefficient for the former
is -0.05, whereas for the latter it is 0.39 (P-values <0.001
for both). More problematically, the uncertainty will be ex-
tremely unstable at the start of AL, as the hyperplane will
readjust dramatically as each new labeled example is ac-
quired. For these reasons, we do not include the uncertainty
in our annotation time prediction model.

We performed a regression analysis to predict the average
time to annotate each abstract based on the order in which
it is screened (i.e., first, second, n-th) and its length. We
used a linear spline with a single knot at 1,000 abstracts
to approximate the nonlinear relationship depicted by the
solid line in Figure 2. Using 1,000 documents for the spline

Figure 3: Document labeling time (in seconds) ver-
sus length (in words).

Figure 4: Document labeling time versus its distance
to the hyperplane in an SVM induced over the entire
dataset.



regression was arbitrary; we just wanted to show that the
learning rate increases rapidly at the start of AL and more
slowly thereafter. Linear mixed models with autocorrelated
errors (to account for similarity of successive abstracts) and
with information regarding which abstracts were screened in
the same ‘session’ (to account for ‘session’-specific effects)
yielded very similar coefficients to those of an ordinary least
squares regression, and we therefore used the latter model.
Specifically, we model the time to screen a document d as
follows:

ŷd(β) = β0 + β1length(d) + β1n1 + β2n2 (2)

where the n1 and n2 variables are functions of the number
of documents that have already been labeled, which we will
denote by n. Specifically, n1 is n when fewer than 1,000
documents have been labeled, and fixed at 1,000 thereafter,
while n2 is 0 when fewer when 1,000 documents have been
labeled and n − 1000 thereafter. This models the desired
spline, which reflects the change in the annotator’s learning
rate.

Of course, while AL is ongoing in practice, β is unknown.
We therefore learn an approximation to β, β̂, online using
standard least-squares regression and the annotation times
of the documents labeled thus far as target values. We then
simply substitute β̂s for the βs in Equation 2. See Algorithm
1 for more details.

5. ACTIVE LEARNING WITH PREDICTED
LABELING TIMES

Our algorithm for AL with predicted labeling times is
shown in Algorithm 1. We first use a small sample of la-
beled data to get an initial estimate of the β coefficients.
Additionally, we induce an initial hypothesis with which to
begin AL.

At each step in the AL loop, which begins at line 5, we
select for labeling the ‘best-value’ document, i.e., the docu-
ment with the largest payoff per estimated time unit. This
is shown in line 6, where d∗ denotes the document selected
for labeling by the reviewer. We then have the reviewer
label this document, and record the time it took to do so
(lines 7 and 8). Next, we re-train our classifier over the
newly augmented training set (line 9). Finally, in line 10,
we update our estimate of the β coefficients using the doc-
ument labeling times observed thus far. In this way, we can
estimate how long it will take to screen the remaining doc-
uments, given their length and the order in which they’ll be
screened, based on the times taken to screen the documents
labeled thus far. This prediction is used as the denominator
in line 6.

6. EXPERIMENTAL RESULTS
In this section, we turn our attention to an empirical eval-

uation of the proposed method. This is meant to demon-
strate the advantage of taking into consideration the pre-
dicted time-to-label in selecting examples to have annotated
in AL, as well as the potential utility of our annotation tool,
which facilitates reviewer/computer interaction. In Section
6.1 we discuss our method of evaluation, which is specific
to the citation screening problem. Next, in Section 6.2, we
outline our experimental setup. Finally, in Section 6.3, we
show our empirical results.

Algorithm 1 Active Learning with Labeling Times

Input: Learning algorithm A, scoring function f , un-
labeled dataset U , labeled data sample Sl, time budget
T

2: t← 0
β̂ ← least squares estimate using S {initial estimate of
β coefficients}

4: ĥt ← A(Sl) {learn initial hypothesis}
while t < T do

6: d∗ ← argmax
d

f(d)

ŷd(β̂)
over U

Sl ← Sl ∪ d∗; U ← U\d∗ {label selected point}
8: t← t + time taken to label d∗

ĥt ← A(S) {rebuild model}
10: β̂ ← least-squares estimate using Sl {recompute esti-

mate of β coefficients using labeled data}
end while

12: Output: Learned hypothesis ht

6.1 Classifier Evaluation
AL algorithms are typically compared by inducing a model

over the examples selected by the different strategies and
then evaluating these models over a hold-out set of instances.
This measures the predictive performance of the induced
classifiers. However, the citation screening task is a finite-
pool scenario, in which we are interested in using a classifier
as a means of annotating a fixed set of documents with as
little effort as possible. We therefore evaluate AL strategies
with respect to this aim.

More specifically, we are interested in two quantities; the
burden imposed on reviewers and the number of relevant
citations correctly identified. Previously, we have used the
number of documents labeled as a measure of the former;
here we use the actual labeling time. We refer to the lat-
ter as ‘yield’; it is the same as sensitivity to the ‘relevant’
class, except that it takes into account the data with which
the model was trained. Thus if an AL querying strategy
consistently selects for labeling relevant documents it is ‘re-
warded’ for this behavior. Note that this is not the same as
testing on training data; we do not attempt to predict the
labels for documents included in the training set. Rather, we
are quantifying the fraction of relevant documents correctly
identified using a particular strategy, regardless of whether
these documents were manually labeled relevant or were cor-
rectly predicted to be relevant by the classifier. Without
using any machine learning techniques, both burden and
sensitivity are 100%, as all relevant citations are identified,
at the expense of the reviewers manually perusing all of the
citations.

To get a single measure of performance (and thus be able
to compare strategies), these metrics must be combined.
However, as mentioned, maximizing yield is more impor-
tant than minimizing burden, and therefore taking a mean
is not appropriate, because this tacitly assigns equal weights
to both. Rather, we want a weighted mean that incorporates
the relative importance of identifying all relevant citations
versus reducing the workload. We call this measure Uλ,
where λ is a scalar that encodes this tradeoff. Formally, we
have:

Uλ =
λ · yield+ (1− workload)

λ+ 1
(3)
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Figure 5: Classifier performance of AL and passive
learning.

Where both yield and the measure of the workload are as-
sumed to be normalized to fall in the range [0, 1]. As men-
tioned, here we use the annotation time spent by the re-
viewer as a measure of the workload.

The question now becomes what value to assign to λ, i.e.,
how to quantify the aforementioned tradeoff. Asking the ex-
pert (reviewer) directly to provide λ does not work, because
it’s difficult to intuit this parameter. In previous work we
proposed using a method from Medical Decision Theory to
quantify the analogous costs for diagnostic tests [14] to elicit
this parameter from the expert in a natural way by means of
a thought experiment and some algebra. For details on this
method, see [15]. In our case, this resulted in a λ of 19; i.e.,
maximizing yield is 19 times as important as minimizing the
workload, according to the reviewer.

6.2 Experimental Setup
We compare the strategy of taking into account the pre-

dicted time it will take label a document when selecting
examples with a strong baseline strategy that we have pre-
viously shown to outperform random sampling [15]. Figure
5 plots U19, the measure of performance described above,
against the number of instances labeled, i.e., the size of the
training set used to induce the classifier. In this case, we
quantify workload by the number of documents that must
be screened by a reviewer. This includes the number of la-
beled documents and the number of documents predicted
to be ‘relevant’ by the induced model, as these will need to
be screened (whereas those documents that are designated
‘irrelevant’ by the classifier needn’t be screened). Given this
result, we use our previously developed AL strategy, rather
than random, as our baseline.

To measure workload, we would like to use the actual
time spent screening citations, rather than the raw number
of documents screened. This is a bit tricky, however, be-
cause the time it will take to screen a particular citation
is at least partially a function of the order in which it is
screened (see Figure 2). Thus we cannot simply use the raw
observed screening times in our experiments, because those
times make sense only when the documents are labeled in
the order in which the reviewer originally screened them.
Therefore, to calculate the time spent labeling a citation for
our experiments (line 8 in Algorithm 1) we use an order-
adjusted time.

Denoting the raw observed time taken to label a document
d by td, we have: rd = ŷd(β) − td, where here we use the
original order in which d was labeled for n (see Equation
2). Then rd is the residual time taken to screen a citation,
unaccounted for by our model. We then recompute ŷd(β),
setting n equal to the number of documents labeled thus
far in the ongoing experiment, and substract from this the
residual, rd.

There is one additional factor that complicates our evalua-
tion; in addition to totaling the time spent labeling, we must
take into account the amount of time it will take to label the
documents that were predicted to be relevant. However, the
‘true’ annotation times for these documents (computed as
described above) will be partially contingent on the order in
which they are screened. To eliminate this issue, we first sort
all of the documents classified as ‘relevant’ by the model in
descending order of length, and then simulate labeling them
in this order. Finally, we compute a normalization constant
for workload as follows (recall that it is expected to fall be-
tween 0 and 1): sort all of the documents in descending order
of document length, and sum the (simulated) time taken to
label them in this order.

To recapitulate, we quantify performance using the Uλ
metric, which is a weighted mean of the two quantities of
interest: yield and burden. The former is the fraction of rele-
vant citations correctly identified, the latter is a measure the
total reviewer workload. In this case, we quantify workload
by the total labeling time, which includes the time taken to
label the training set, as well as the time taken to screen the
citations categorized as ‘relevant’ by the classifier. The λ in
this case was elicited from a reviewer, as we have described
elsewhere [15]. A final note on evaluation: because we have
extreme ‘class imbalance’, i.e., there are far fewer relevant
than irrelevant citations, we under-sample the majority class
of irrelevant citations before training our classifiers for eval-
uation. In other words, we remove irrelevant citations from
the training set at random until there are an equal number
of irrelevant and relevant citations. This strategy has been
shown to be effective in mitigating the effects of class im-
balance [8] (if this is not done, the induced model tends to
have high accuracy but low sensitivity, even when a higher
cost is assigned to false negatives in training the SVM).

6.3 Results
We compare three AL strategies, described as follows:

• greedy This strategy greedily selects for labeling the
most promising document, based on labeled terms (see
Section 2.1).

• predicted time This method divides document scores
(computed using the labeled terms, via Equation 1) by
the predicted time it is going to take to screen them,
based on the regression model described in Section 4
and the current estimate of β, β̂. This is the strategy
we’re proposing be used in practice.

• true time This is the same strategy predicted time,
except that it uses the true coefficients, β, as learned
over the entire time series. This approach is there-
fore ‘cheating’, because it uses coefficients learned over
data that wouldn’t be available during AL. The idea is
to see how this compares to using the predicted time
approach, which uses an estimate of β.



Note that all three strategies essentially follow Algorithm
1. The key difference is line 6; the greedy strategy does not
normalize by anything, the predicted time strategy uses
β̂, as shown in the algorithm, while the true time variant
uses β in the denominator.

The dataset we use for experimentation is the proton
beam systematic review dataset. This dataset comprises
4,751 citations, of which 457 the reviewer labeled as rele-
vant (i.e., screened in).5 The reviewer provided 43 terms
suggestive of ‘relevance’ and 26 indicative of ‘irrelevance’.
Unfortunately, this is the only dataset for which we cur-
rently have recorded screening times, and thus is the only
dataset we run experiments over.

Our experiments were conducted as follows. We allot-
ted six hours for (simulated) labeling, and evaluated per-
formance every hour. We take the most recently reported
performance at each check-in point (i.e., on the hour). All
results are averaged over ten independent runs in this way.
This experimental framework matches our scenario: we are
assuming that we have a fixed amount of time to annotate
a corpus, and want to evaluate our performance with re-
spect to categorizing this set of documents under the time
(equivalently, budget) constraints.

Figure 6a plots the average cumulative number of exam-
ples that were labeled using each of the three strategies at
the end of each hour. The error bars for the predicted
time strategy show the standard deviations at each time
point; the other two querying strategies are deterministic.
It is reassuring that both strategies that take time into con-
sideration are indeed able to have the reviewer label more ci-
tations in the same amount of time, compared to the greedy
strategy. Interestingly, using the predicted time approach
often results in acquiring more labels than when the true
time strategy is used. We suspect that this is because the
time prediction model learned online is ‘pessimistic’, in that
it tends to predict that documents will take longer to label
than they actually do. This is likely because of bias in the
documents for which labels are requested during AL (over
which the time prediction model is subsequently induced);
these tend to be difficult, and thus the ‘true’ labeling time
is higher than it would be if an i.i.d. sample were used.

The average performances of the respective strategies at
each time point are shown in Figure 6b. The error bars
are standard deviations. Note that even the determinis-
tic querying strategies have standard deviations because we
have to under-sample the majority class (irrelevant cita-
tions) to mitigate the effects of the severe class imbalance, as
described above (this introduces a stochastic element). The
first thing to note is that both strategies that take time into
account outperform the greedy strategy at all points after
the first hour. It is intuitive that taking the ‘long-view’ strat-
egy should only pay off after some sufficient amount of time
has passed. The greedy strategy (almost by definition) will
rapidly achieve good performance, but will quickly exhaust
its budget. On the other hand, time-sensitive strategies pay
off by being prudent in their example selection; the aggre-
gate benefit of this strategy takes some time to manifest.

5We have previously used this dataset with labels from a
different reviewer, who screened this data before the Ab-
strackr tool was developed. We had a colleague re-screen
them in order to test our tool; the class distribution break-
down is thus slightly different in this case than in our pre-
vious work.

It is also encouraging that our predicted time strategy,
which learns to predict how long it’s going to take to label
citations online (i.e., during AL), performs comparably to
the true time strategy, which uses the ‘true’ model coef-
ficients β, as learned over the entire labeled dataset. This
is in contrast to previous work [11] in which the predictive
model was not sufficiently accurate to achieve the same per-
formance as when the true times were used. It is possible
that our incorporation of the annotator learning rate, i.e.,
the number of documents labeled prior to the document for
which labeling time is to be predicted, accounts for the suc-
cess of our approach.

7. CONCLUSIONS & FUTURE WORK
We have presented abstrackr, an open-source annota-

tion tool. This tool provides an interface for reviewers to
screen citations for systematic reviews. It also facilitates
AL, i.e., the interactive training of a classification model
to automatically categorize remaining citations as ‘relevant’
or ‘irrelevant’, thereby reducing workload. Moreover, ab-
strackr allows the user to communicate additional infor-
mation to the model; namely, labeled terms, which are words
or n-grams whose presence indicates that a document is
more or less likely to be ‘relevant’ to the review. Finally,
our annotation tool records labeling times, which we empir-
ically investigated.

We defined an AL scoring function that exploits terms
provided via our interface. Typically, the approach is to
sort the unlabeled examples (documents) by their scores
and then greedily have the expert label the highest scor-
ing instance. However, we demonstrated that normalizing
these scores by the predicted time it will take to label the
corresponding document results in a better performing sys-
tem. Moreover, we presented a simple spline regression that
incorporates document length and the order in which a doc-
ument is labeled as predictive variables. The spline serves
as a simple model for the annotator’s learning rate. The
coefficients for this model can be learned online, as AL is
ongoing. We showed that using this ‘return on investiment’
approach results in better performance in the same amount
of time, compared with the greedy strategy.

In future work, we plan on conducting more experiments
to test the strategy outlined here on additional datasets. We
also plan to address the problem of optimizing labeling as-
signments when there are multiple reviewers participating
in a systematic review. Finally, we are working to incorpo-
rate the labeled terms directly into the SVM optimization
function, rather than only using them during AL.
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