CS 4100 // artificial intelligence

INstructor: byron wallace

Hidden Markov Models

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein




Probability recap

Conditional probability P(zly) = P(z,y)

Product rule

P(xz,y) = P(z|y)P(y)

 Chain rule
P(X1,Xo,...Xn) = P(X1)P(X5|X1)P(X3|X1,X5)...
n
= ]] P(XilX1,..., X5-1)
i=1
« X, Y independent if and only if: Vae,y : P(z,y) = P(x)P(y)

Xand Y are conditionally independent given Z (X Il Y'| Z) if and only if:

Va,y,z 1 P(x,y|z) = P(z]z)P(y|z)



L ast time: Markov Models

Assume the weather has three states

1. Rainy
2. Cloudy
3. Sunny

What is the probability of the sequence

O = <337 S37 S17 S2>

p(O) = plga = 52|93 = 51,92 = 53,1 = S3)
p(gs = S1|q2 = S3,q1 = S3)

Chain Rule
p(g2 = S3|q1 = S3)p(q1 = S3)




Markov Moadels

Markov assumption: The state at time t (q,) is conditionally independent
of all other states given the value of the previous state (g, ;)

n

p(X1,..., X,) = Hp(Xi]Parents(Xi))
i=1

p(O) = plga = S2lgzs = S1)p(gz = S1|g2 = S3)
p(g2 = S3lq1 = S3)p(q1 = S3)



Markov Moadels

Generally parameterized by

* Transition matrix A Z“" 1 04 03 03
a;; >0 — A={a;}=]02 06 02
0.1 0.1 0.8

* |nitial State Distribution it ) )
m; 2> 0 Zﬂ.i —1 0.1
i v = {7’(’2} — 0.5

04




Markov Moadels

A33 n—2 n—1 n n+1

State Diagram Unfolded “Lattice”

[Bishop]



Today: Hidden Markov Models (HMMSs)




Hidden Markov Models

Markov chains not so useful for most agents
* Need observations to update your beliefs

Hidden Markov models (HMMSs)
» Underlying Markov chain over states X
* You observe outputs (effects) at each time step
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—xample: weather

P(X: | Xi—1)

An HMM is defined by

MM

P(E; | Xy)

« Initial distribution: P(X1)
« Transitions: P(X; | Xi_1)
 Emissions: P(Et ‘ Xt)

ofii

Rt RTH P<Rt+1 ’Rt) Rt Ut P(Ut“:%t)
+ro |+ 0.7 +r | +U 0.9
+r | -r 0.3 +r | -u 0.1
-ro| 4 0.3 -r | +U 0.2
-r -r 0.7 - | -u 0.8




—xample: weather HMM

R, | P(RY

Support we observe an umbrella two days in a row.
What is the probability that it’s raining on the 29 day”?



—xample: Ghostbusters HMM

« P(X,) = uniform

« PX|X') = usually move clockwise, but
sometimes move in a random direction or
stay in place

* P(RX) = same sensor model as before:
red means close, green means far away.

D@y

PXX'=<1,2>)



Joint distribution of an HMM

D@

Joint distribution:

P(X1, E1, X2, By, X3, E3) = P(X1)P(E1|X1)P(X2|X1)P(E2| X2)P(X3]X2)P(E5| X3)

More generally: T
P(Xy, By,..., X7, Er) = P(X1)P(Ey [ X1) | | P(Xi|X0—1) P(E|X)
t=2



G~

The chan rule and HMIMS

From the chain rule, every joint distribution over X1, F1, Xo, Fo, X3, /3 can be written as:

P(X1, Eh, X2, Eo, X3, B3) =P(X4)P(E1| X1)P(X2| X1, E1)P(E2| X1, B, Xo)
P(X3| X1, Ev, Xo, Eo) P(E5| X1, B, Xo, B, X3)

For HMMs we make the following (conditional) independence assumptions:

Xo Il By | X1, FEoll X4, FE1 | Xe, X3l Xy, FE1,FEs | Xoy, FEs 1 Xy,E;,Xo, Ey | X3

And can rewrite as:

P(X1, E1, X2, By, X3, E3) = P(X1)P(E1|X1)P(X2|X1)P(E2| X2)P(X3]X2) P(E5| X3)



The chain rule and HMMSs, In general g@ é:

From the chain rule, every joint distribution over X4, E4,..., X7, Ep can be written as:

T
P(XlaEla"'7XT7ET) :P<X1)P<E1‘Xl)HP<Xt’X17E17"'7Xt—17Et—1)P(Et‘X17E17'")Xt—lyEt—laXt>

t=2

Assuming that for all t:
State independent of all past states and all past evidence given the previous state, i.e.:

Xt AL X17 E17 <o 7Xt—27 Et—27 Et—l | Xt—l
Evidence is independent of all past states and all past evidence given the current state, i.e.:

E, U X9, F,..., X0, By o, Xe1,Er1 | Xy

Which gives us:
T

P(Xy,By,..., Xy, Ep) = P(X1)P(Ey | X1) | | P(Xi| Xi-1) P(E| Xy)
t=2



Implied conditional independencies

D@D
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Many implied conditional independencies, e.g.,

Ei1 U Xo, Fo, X3, FE3 | X4

We can prove these as we did last class for Markov models (but we won'’t today)
This also comes from the graphical model; we'll cover this more formally in a later lecture



AN occasionally disnonest casino

Consider the following casino game
1. You bet $1 and roll a fair die
2.  Casino dealer rolls a (sometimes fair, sometimes loaded die)
3.  Highest number wins $2

Casino sequence of rolls
1245526462146146136136661664661636616366163616515615115146123562344

Which die is being used for each play?



Dishonest casino mode

« Assume 1 fair and 1 loaded die |

p(z; #6|~f) = —
p(zilf) = - 110
pl; = 6|~ f) = =

« Secondly, assume that the casino cannot always use loaded dle, but only switches

occasionally
‘o

[example credit: Tom Mitchell]



Our betting game

Casino sequence of rolls

1245526462146146136136661664661636616366163616515615115146123562344

Which die is being used for each play?



‘(Generative model” for casino game

t=1

Casino chooses initial die g, (state selected)
Casino rolls die o, (observation made)

Casino selects die for next roll q,, ; (state transition)
t=t+7 and if t<T, goto 3

O B~ W N =



HMMs can be used to answer the following

1. Given observation sequence 0={0,,0.,...,07), compute p(0;0) [evaluation]
2. Given observation sequence 0={0,,0,,...,07), compute p(q|o;©) [decoding]

3. Given a set of observation sequences O, estimate © [learning]



Q1 evaluation

PolA) =



Q1 evaluation

Given observation sequence 0={0,,0,,...,07), compute p(o; A)

P(o12)= > P(ol q.1)P(qlA)
all Q
Unfortunately, this requires O(NT) calculations. Oh no!



Dynamic programming (the “forward algorithm”)

Oy = Observations

) @




% ‘ogramming

1) Initialization:

(11“) = 'ﬂ',‘b,‘(Oq), 1

2) Induction:
N

areq(f) = [Z ayli)a;;

i=1

3) Termination:

We’ve been
saved! O(N?T)!

IA

}b,.-(om), 1

1

N
POIN) = 2 aqli).

=1

iA

IA

IA
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Q2: Decoding

Given observation sequence 0={0,,0,,...,07), compute p(q|o; A)

We are not guaranteed a unigque solution
« Do we find most likely individual states g; or the most likely (joint) sequence q?

« Optimizing for the most likely state at a specific time can lead to impossible sequences
under ©

« Therefore, we will consider maximizing the joint probability of the sequence



Decoding the state seguence

We want to find @
q*<— argmaxP(q,0 | ©)
q

In maximizing joint, enumerating all possible sequences is intractable
Oh no!



Viterol algortinm



Viterol algortinm

Define

6,(i) = max Plg1g; - g, =10, O1 Oy - -+ OfA]
G1.GQ2," " G-y

(the most likely sequence to time t-7 that ends in state /). The corresponding inductive step is

0¢+4(f) = [max 6.i)a;] - b;'(ot+1)°

Essentially, from the best path thus far, we find the most probable transition/emission probability



Q3: Leaming

Given a set of observation sequences O, estimate A

We can do this using an iterative estimation algorithm, i.e., an instance of
Expectation Maximization

We will come back to this in a later lecture on learning more generally



-Or more, see

A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition

LAWRENCE R. RABINER, FELLOW, IEEE

Although initially introduced and studied in the late 1960s and
early 1970s, statistical methods of Markov source or hidden Markov

modeling have become increasingly popular in t

|. INTRODUCTION

Real-world processes generally produce observable out-
puts which can be characterized as signals. The signals can

he last several
years, There arc WO Strong reasons why this has occurred
models are very richin mathematical structure and hence can form
the theoretical basis for use in a wide range of applications. Sec-
ond the models, when applied properly, work very
for several important applications. In this paper we attempt to care-
fully and methodically review the theoretical aspect
of statistical modeling and show how they have been
selected problems in machine recognition of speech.

In this case, witha good signal model, we can simulate the
source and learn as much as possible via simulations.
Finally, the most important reason why signal models are
importantis that they often work extremely wellin practice,
and enable us 10 realize important practical systems—e.B.s
prediction systems, recognition systems, identification sys-
tems, etc., in a very efficient manner.

These are several possible choices for whattype of signal
model is used for characterizing the properties of a given
signal. Broadly one can dichotomize the types of signal
modelsinto the class of deterministic models, and the class
of statistical models. Deterministic models generally exploit
some known specific properties of the signal, €.8. that the
signal is 3 sine wave, or asum of exponentials, etc. In these



Real HMM examples

Speech recognition HMMs:
« Qbservations are acoustic signals (continuous valued)
« States are specific positions in specific words (so, tens of thousands)

Machine translation HMMSs:
* Observations are words (tens of thousands)
« States are translation options

Robot tracking:
» Observations are range readings (continuous)
« States are positions on a map (continuous)



Hltering / monitoring

» Filtering, or monitoring, is the task of tracking the distribution B,(X) =
P.(X; | ey, ..., &) (the belief state) over time

» We start with B;(X) in an initial setting, usually uniform
* As time passes, or we get observations, we update B(X)

* The Kalman filter was invented in the 60’s and first implemented as a
method of trajectory estimation for the Apollo program



—xample: robot localization

Example from Michael Pleiffer

&i

N
Prob 0 1

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.




—xample: robot localization

S 0
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake




—xample: robot localization

Prob 0 1

t=2



—xample: robot localization

Prob 0 1

t=3



—xample: robot localization

Prob 0 1

t=4



—xample: robot localization

Prob 0 1

t=5



xample: passage of time

As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

M




—xample: opbservation

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation




Online belief updates

 Every time step, we start with current P(X | evidence)

« We update for time:
—>
P(xile1—1) = > P(xi—1le1:1—1) - P(x|lzi—1)

Ti—1
» \WWe update for evidence: @
P(xtler:t) ocx P(xtler:i—1) - P(et|zt) l

 The forward algorithm does both at once (and doesn’t normalize) @



Summary: reasoning over time

Markov models [ H T

," / ’/‘ “’
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P(X1) P(X|X_1) @

Hidden Markov models
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P(E|X)

X E P
rain umbrella 0.9
rain Nno umbrella 0.1
sun umbrella 0.2
sun Nno umbrella 0.8




Particle filtering: a different way of tracking

| | You are |
— YO b Ii
You ar You pre You are | ke |
| bed You are . 20¢ here
here You are Yl:u are
here Yoo ore
here
You are
\ here

\



Dieter FoX, Wwolfram Burgard‘* .
gchool of Computer SCIENCC t Computer SCIENce Department 1t
Camegl¢ Mellon University University of Bonn
P'msburgh, PA Bonn, Germany



Particle filtering

Filtering: approximate solution

Sometimes |X| is too big to use exact inference
« |[X| may be too big to even store B(X)
« E.g. Xis continuous

Solution: approximate inference
* Track samples of X, not all values
« Samples are called particles
« Time per step is linear in the number of samples
« But: number needed may be large
* Inmemory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample




Representation: particles

Our representation of P(X) is now a list of N particles (samples)
« Generally, N << |X]
« Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x
* S0, many x may have P(x) = O!
» More particles, more accuracy

Particles:

w
W

LMD ONOO®

For now, all particles have a weight of 1

PRBIDBRHR



Particle filtering: elapse time

Each particle is moved by sampling its next position from
the transition model

Particles:

®
W

EREREIS SRS RS RS

' = sample(P(X'|z))

« This is like prior sampling — samples’ frequencies reflect the transition
probabilities

N eN

* Here, most samples move clockwise, but some move in another
direction or stay in place

Particles:

®
N

DD =DON

This captures the passage of time
» If enough samples, close to exact values before and after (consistent)

PRPIRBRER



Particle filtering: when we get evidence

Particles:

®
N

Mhwwhw=2Evw
— N N N N N N ' N

Slightly trickier:

« Don’t sample observation, fix it

« Similar to likelihood weighting, downweight samples
based on the evidence

NN TN

w(x) = P(e|x)

B(X) x P(e|X)B'(X)

Particles:
3,2 w=.9
w=.2

» As before, the probabilities don’t sum to one, since
all have been downweighted

PERIBBBBD
DM ®
sz ¢<
L | T [

DO



Particle filtering: resampling

Rather than tracking weighted samples, we resample Particles:

)
)
N times, we choose from our weighted sample distribution ESJ;
(i.e. draw with replacement) (3,2)
)
)
)
)

sz z%
Noiao©oh]

This is equivalent to renormalizing the distribution (2,2

Now the update is complete for this time step, continue
with the next one

(New) Particles:

—

LW~ 00N W
DLW N

o~~~



Recap: particle filtering

Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
Particles: Particles: Particles: (New) Particles:
(3,3) 3,2) 3,2) w=.9 (3,2)
2,3) 2,3) 2,3) w=.2 2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
3,2) 3,1) 3,1) w=.4 2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
3,2) 3,2) 3,2) w=.9 (3,2)
1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) 2,3) , 2,3) w=.2 2,3)
3,3)  Transition particles 3,2 Observe evidence and  (32) w=.9 Sample N new (3.9
2.3) based on models 2.2) re-weight to reflect this  2,2) w=.4 particles using — 3.2)

weights



That's it for today!

« Midterm next week!
« Homeworks due Sunday!
* Review session Iin class Tuesday: come with guestions!



