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Probability recap
• Conditional probability

• Product rule

• Chain rule 

• X, Y independent if and only if:

• X and Y are conditionally independent given Z (                  ) if and only if:



Last time: Markov Models
Assume the weather has three states

1. Rainy
2. Cloudy
3. Sunny

What is the probability of the sequence

O = hS3, S3, S1, S2i
p(O) = p(q4 = S2|q3 = S1, q2 = S3, q1 = S3)

p(q3 = S1|q2 = S3, q1 = S3)
p(q2 = S3|q1 = S3)p(q1 = S3)

Chain	Rule



Markov assumption: The state at time t (qt) is conditionally independent 
of all other states given the value of the previous state (qt-1)

qt-2 qt-1 qt

p(X1, . . . ,Xn) =
nY

i=1

p(Xi|Parents(Xi))

p(O) = p(q4 = S2|q3 = S1)p(q3 = S1|q2 = S3)
p(q2 = S3|q1 = S3)p(q1 = S3)

Markov Models



Generally parameterized by

• Transition matrix A

• Initial State Distribution π
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Markov Models



HMM latent state example

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

Moray Allan & Tingting Jiang Chris Bishop’s PRML Chapter 13: Sequential data

HMM latent state example

k = 1

k = 2

k = 3

n� 2 n� 1 n n + 1

A11 A11 A11

A33 A33 A33

Moray Allan & Tingting Jiang Chris Bishop’s PRML Chapter 13: Sequential dataState Diagram Unfolded “Lattice”

[Bishop]

Markov Models



Today: Hidden Markov Models (HMMs)



Hidden Markov Models

Markov chains not so useful for most agents
• Need observations to update your beliefs

Hidden Markov models (HMMs)
• Underlying Markov chain over states X
• You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: weather HMM

Rt Rt+1 P(Rt+1|Rt)
+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)
+r +u 0.9
+r -u 0.1
-r +u 0.2
-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

An HMM is defined by
• Initial distribution:
• Transitions:
• Emissions:

P (Xt | Xt�1)

P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)



Example: weather HMM
Section 15.1. Time and Uncertainty 569
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Figure 15.2 Bayesian network structure and conditional distributions describing the
umbrella world. The transition model is P (Raint |Raint−1) and the sensor model is
P (Umbrellat |Raint).

direction of the dependence between state and sensors: the arrows go from the actual state
of the world to sensor values because the state of the world causes the sensors to take on
particular values: the rain causes the umbrella to appear. (The inference process, of course,
goes in the other direction; the distinction between the direction of modeled dependencies
and the direction of inference is one of the principal advantages of Bayesian networks.)

In addition to specifying the transition and sensor models, we need to say how every-
thing gets started—the prior probability distribution at time 0, P(X0). With that, we have a
specification of the complete joint distribution over all the variables, using Equation (14.2).
For any t,

P(X0:t, E1:t) = P(X0)

t∏

i =1

P(Xi |Xi−1) P(Ei |Xi) . (15.3)

The three terms on the right-hand side are the initial state model P(X0), the transition model
P(Xi |Xi−1), and the sensor model P(Ei |Xi).

The structure in Figure 15.2 is a first-order Markov process—the probability of rain is
assumed to depend only on whether it rained the previous day. Whether such an assumption
is reasonable depends on the domain itself. The first-order Markov assumption says that the
state variables contain all the information needed to characterize the probability distribution
for the next time slice. Sometimes the assumption is exactly true—for example, if a particle
is executing a random walk along the x-axis, changing its position by ±1 at each time step,
then using the x-coordinate as the state gives a first-order Markov process. Sometimes the
assumption is only approximate, as in the case of predicting rain only on the basis of whether
it rained the previous day. There are two ways to improve the accuracy of the approximation:

1. Increasing the order of the Markov process model. For example, we could make a
second-order model by adding Rain t−2 as a parent of Rain t, which might give slightly
more accurate predictions. For example, in Palo Alto, California, it very rarely rains
more than two days in a row.

2. Increasing the set of state variables. For example, we could add Season t to allow

Support we observe an umbrella two days in a row.
What is the probability that it’s raining on the 2nd day?



• P(X1) = uniform

• P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

• P(Rij|X) = same sensor model as before:
red means close, green means far away.
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Example: Ghostbusters HMM



Joint distribution of an HMM

Joint distribution:

More generally:

X5X2

E1

X1 X3

E2 E3

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)



From the chain rule, every joint distribution over                                           can be written as:

For HMMs we make the following (conditional) independence assumptions:

And can rewrite as:

X1, E1, X2, E2, X3, E3

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

X2

E1

X1 X3

E2 E3

The chain rule and HMMs

X2 ?? E1 | X1, E2 ?? X1, E1 | X2, X3 ?? X1, E1, E2 | X2, E3 ?? X1, E1, X2, E2 | X3



From the chain rule, every joint distribution over                                         can be written as:

Assuming that for all t: 
State independent of all past states and all past evidence given the previous state, i.e.: 

Evidence is independent of all past states and all past evidence given the current state, i.e.:

Which gives us:

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|X1, E1, . . . , Xt�1, Et�1)P (Et|X1, E1, . . . , Xt�1, Et�1, Xt)

Xt ?? X1, E1, . . . , Xt�2, Et�2, Et�1 | Xt�1

X2

E1

X1 X3

E2 E3

Et ?? X1, E1, . . . , Xt�2, Et�2, Xt�1, Et�1 | Xt

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)

The chain rule and HMMs, in general



Implied conditional independencies

Many implied conditional independencies, e.g.,

We can prove these as we did last class for Markov models (but we won’t today)
This also comes from the graphical model; we’ll cover this more formally in a later lecture

X2

E1

X1 X3

E2 E3

E1 ?? X2, E2, X3, E3 | X1



An occasionally dishonest casino
Consider the following casino game

1. You bet $1 and roll a fair die
2. Casino dealer rolls a (sometimes fair, sometimes loaded die)
3. Highest number wins $2

Casino sequence of rolls

Which die is being used for each play?

1245526462146146136136661664661636616366163616515615115146123562344



Dishonest casino model

• Assume 1 fair and 1 loaded die

• Secondly, assume that the casino cannot always use loaded die, but only switches 
occasionally

p(xi|f) =
1
6

p(xi = 6|¬f) =
1
2

p(xi 6= 6|¬f) =
1
10

fair loaded0.95 0.95

0.05

0.05

[example credit: Tom Mitchell]



Our betting game

Casino sequence of rolls

Which die is being used for each play?

1245526462146146136136661664661636616366163616515615115146123562344

o1 o2 oT

q1 q2 qT…



“Generative model” for casino game

1. t=1
2. Casino chooses initial die qt  (state selected)
3. Casino rolls die ot (observation made)
4. Casino selects die for next roll qt+1 (state transition) 
5. t=t+1 and if t<T, goto 3



HMMs can be used to answer the following

1. Given observation sequence o={o1,o2,…,oT), compute p(o;Θ) [evaluation]
2. Given observation sequence o={o1,o2,…,oT), compute p(q|o;Θ)  [decoding] 
3. Given a set of observation sequences O, estimate Θ [learning] 



Q1: evaluation

€ 

P(o | λ) = P(o |  q,
all Q
∑  λ)P(q | λ)



Given observation sequence o={o1,o2,…,oT), compute p(o; ƛ)

€ 

P(o | λ) = P(o |  q,
all Q
∑  λ)P(q | λ)

Unfortunately, this requires O(NT) calculations.  Oh no!

Q1: evaluation



Dynamic programming (the “forward algorithm”)

time	T	



Dynamic programming

We’ve	been
saved!		O(N2T)!



Q2: Decoding
Given observation sequence o={o1,o2,…,oT), compute p(q|o; λ)

We are not guaranteed a unique solution
• Do we find most likely individual states qi or the most likely (joint) sequence q?
• Optimizing for the most likely state at a specific time can lead to impossible sequences 

under Θ
• Therefore, we will consider maximizing the joint probability of the sequence



Decoding the state sequence

We want to find q*

In maximizing joint, enumerating all possible sequences is intractable
Oh no!

€ 

q*← argmax
q

P(q,o |Θ)



Viterbi algortihm



Viterbi algortihm

Define

(the most likely sequence to time t-1 that ends in state i). The corresponding inductive step is

Essentially, from the best path thus far, we find the most probable transition/emission probability 



Q3: Learning
Given a set of observation sequences O, estimate λ 

We can do this using an iterative estimation algorithm, i.e., an instance of 
Expectation Maximization

We will come back to this in a later lecture on learning more generally



For more, see



Real HMM examples
Speech recognition HMMs:

• Observations are acoustic signals (continuous valued)
• States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
• Observations are words (tens of thousands)
• States are translation options

Robot tracking:
• Observations are range readings (continuous)
• States are positions on a map (continuous)



Filtering / monitoring
• Filtering, or monitoring, is the task of tracking the distribution Bt(X) = 

Pt(Xt | e1, …, et) (the belief state) over time

• We start with B1(X) in an initial setting, usually uniform

• As time passes, or we get observations, we update B(X)

• The Kalman filter was invented in the 60’s and first implemented as a 
method of trajectory estimation for the Apollo program



Example: robot localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from Michael Pfeiffer



t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

10Prob

Example: robot localization



t=2

10Prob

Example: robot localization



t=3

10Prob

Example: robot localization



t=4

10Prob

Example: robot localization



t=5

10Prob

Example: robot localization



Example: passage of time
As time passes, uncertainty “accumulates”

T	=	1 T	=	2 T	=	5

(Transition model: ghosts usually go clockwise)



Example: observation
As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Online belief updates
• Every time step, we start with current P(X | evidence)
• We update for time:

• We update for evidence:

• The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



Summary: reasoning over time

Markov models

Hidden Markov models

X2X1 X3 X4 rain sun
0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8



Particle filtering: a different way of tracking





0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

Filtering: approximate solution

Sometimes |X| is too big to use exact inference
• |X| may be too big to even store B(X)
• E.g. X is continuous

Solution: approximate inference
• Track samples of X, not all values
• Samples are called particles
• Time per step is linear in the number of samples
• But: number needed may be large
• In memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

Particle filtering



Representation: particles

Our representation of P(X) is now a list of N particles (samples)
• Generally, N << |X|
• Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x
• So, many x may have P(x) = 0! 
• More particles, more accuracy

For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle filtering: elapse time

Each particle is moved by sampling its next position from 
the transition model

• This is like prior sampling – samples’ frequencies reflect the transition 
probabilities

• Here, most samples move clockwise, but some move in another 
direction or stay in place

This captures the passage of time
• If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Slightly trickier:
• Don’t sample observation, fix it

• Similar to likelihood weighting, downweight samples 
based on the evidence

• As before, the probabilities don’t sum to one, since 
all have been downweighted

Particle filtering: when we get evidence

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle filtering: resampling
Rather than tracking weighted samples, we resample

N times, we choose from our weighted sample distribution 
(i.e. draw with replacement)

This is equivalent to renormalizing the distribution

Now the update is complete for this time step, continue 
with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Recap: particle filtering
Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Transition particles 
based on models

Observe evidence and
re-weight to reflect this

Sample N new 
particles using 

weights



That’s it for today!
• Midterm next week! 
• Homeworks due Sunday! 
• Review session in class Tuesday: come with questions!


