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Last time

Reasoning about actions under the assumption that the environment is deterministic
(we knew exactly what would happen)

This is not terribly realistic. We may not know how an opponent will respond, for 
example. More generally, the world is a stochastic place. 



Uncertain outcomes



Remember street fighter
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Worst-case vs. average case
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Expectimax search
Why wouldn’t we know what the result of an action will be?

• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax) outcomes, not 
worst-case (minimax) outcomes

Expectimax search: compute the average score under optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-result problems 
as Markov Decision Processes
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Expectimax pseudocode
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def	exp-value(state):
initialize	v	=	0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	*	value(successor)

return	v

def	max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v



def	exp-value(state):
initialize	v	=	0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	*	value(successor)

return	v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax pseudocode
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Expectimax example
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Expectimax example
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Expectimax example
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Expectimax pruning?



Depth-Limited expectimax

…

…

492 362 …

400 300
Estimate of true 

expectimax value 
(which would 
require a lot of 

work to compute)



Probabilities



Review/primer: probabilities
A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes
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A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway
Random variable: T = whether there’s traffic
Outcomes: T in {none, light, heavy}
Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
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Review/primer: probabilities
A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway
Random variable: T = whether there’s traffic
Outcomes: T in {none, light, heavy}
Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Some laws of probability (more later):
Probabilities are always non-negative
Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
We’ll talk about methods for reasoning and updating probabilities later
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The expected value of a function of a random variable is the average, weighted by the 
probability distribution over outcomes

Example: How long to get to the airport?

Review/primer: expectations of RVs

0.25 0.50 0.25Probability:

20	min 30	min 60	minTime:
35	minx x x+ +



The expected value of a random variable is the long-run average value of 
repetitions of the experiment it represents.

Review/primer: expectations of RVs



Expectations: a few useful factsLinearity"of"Expecta3on""
"

Linearity of Expectation

Theorem

For any two random variables X and Y

E [X + Y ] = E [X ] + E [Y ].

Lemma

For any constant c and discrete random variable X ,

E[cX ] = cE[X ].



Distributions

Random variables follow distributions

Two important distributions: 
• Bernoulli distribution (discrete; think coin flips)
• Normal distribution (continuous; e.g. IQ)

There are, of course, many (many!) others. We will return to this.



Distributions

Distributions have probability mass functions that describe the 
relative likelihood of a random variable taking a given value.



Bernoulli distribution

A Bernoulli random variable takes 1 with probability p and 0 
with probability 1-p.

A single coin toss is a good example.

Expectation: p
Variance: p(1-p)



Generalizes the Bernoulli

Suppose we flip a coin k times and record the count of heads Y

This is called the binomial distribution

Note that the Bernoulli is a special case: 

B(1, p)

Binomial



“Fitting” data via Maximum Likelihood 
Estimation (MLE)

Suppose we observe a bunch of data points and we believe they are drawn from 
some underlying distribution / statistical model

• We’d like to estimate the parameters of this distribution from the data

Maximum likelihood estimation involves finding parameter values that maximize the 
likelihood function 



Bernoulli MLE

COS 424: Interacting with Data

Lecturer: David Blei Lecture #4
Scribes: Wei Ho, Michael Ye February 14, 2008

1 Maximum likelihood estimation

1.1 MLE of a Bernoulli random variable (coin flips)

Given N flips of the coin, the MLE of the bias of the coin is

b
⇡ =

number of heads
N

(1)

One of the reasons that we like to use MLE is because it is consistent. In the example
above, as the number of flipped coins N approaches infinity, our the MLE of the bias ⇡̂

approaches the true bias ⇡

⇤, as we can see from the graph below.

1.2 MLE of a Gaussian random variable

The parameters of a Gaussian distribution are the mean (µ) and variance (�2). Given ob-
servations x1, . . . , xN , the likelihood of those observations for a certain µ and �

2 (assuming
that the observations came from a Gaussian distribution) is
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and the log likelihood is
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We can then find the values of µ and �

2 that maximize the log likelihood by taking deriva-
tive with respect to the desired variable and solving the equation obtained. By doing so,
we find that the MLE of the mean is

µ̂ =
1
N

NX
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xn (4)

and the MLE of the variance is
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In expectimax search, we have a probabilistic model of how 
the opponent (or environment) will behave in any state

• Model could be a simple uniform distribution (roll a die)
• Model could be sophisticated and require a great deal of 

computation
• We have a chance node for any outcome out of our control: 

opponent or environment
• The model might say that adversarial actions are likely!

More generally: what probabilities to use?

Having a probabilistic belief about another 
agent’s action does not mean that the 

agent is flipping any coins!



Exercise: expectimax in SFII



Pop Q: Informed Probabilities

• Let’s say you know that your opponent is actually running a depth 2 
minimax, using the result 80% of the time, and moving randomly otherwise
• Question: What tree search should you use?  

0.1										0.9

Answer: Expectimax!
§ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent
§ This kind of thing gets very slow very quickly
§ Even worse if you have to simulate your opponent 

simulating you…
§ … except for minimax, which has the nice 

property that it all collapses into one game tree



Maximum expected utility
Why should we average utilities? Why not minimax?

Principle of maximum expected utility:
• A rational agent should chose the action that maximizes its 

expected utility, given its knowledge

Questions:
• Where do utilities come from?
• How do we know such utilities even exist?
• How do we know that averaging even makes sense?
• What if our behavior (preferences) can’t be described by utilities?



Utilities
Utilities are functions from outcomes (states of 
the world) to real numbers that describe an 
agent’s preferences

Where do utilities come from?
• In a game, may be simple (+1/-1)
• Utilities summarize the agent’s goals
• Theorem: any “rational” preferences can be 

summarized as a utility function

We hard-wire utilities and let behaviors emerge
• Why don’t we let agents pick utilities?
• Why don’t we prescribe behaviors?



What utilities to use?

For worst-case minimax reasoning, terminal function scale doesn’t matter
• We just want better states to have higher evaluations (get the ordering right)
• We call this insensitivity to monotonic transformations

For average-case expectimax reasoning, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900



Utilities: uncertain outcomes
Getting ice cream

Get Single Get Double

Oops Whew!



Preferences

An agent must have preferences among:
• Prizes: A, B, etc.
• Lotteries: situations with uncertain prizes

Notation:
• Preference:
• Indifference:

A                  B

p                1-p

A LotteryA Prize

A



Rationality



We want some constraints on preferences before we call them rational, such as:

For example: an agent with intransitive preferences can
be induced to give away all of its money
• If B > C, then an agent with C would pay (say) 1 cent to get B
• If A > B, then an agent with B would pay (say) 1 cent to get A
• If C > A, then an agent with A would pay (say) 1 cent to get C

Rational preferences

)()()( CACBBA !!! ÞÙAxiom of Transitivity:



Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

Rational preferences



Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
• Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

• i.e. values assigned by U preserve preferences of both prizes and lotteries!

Maximum expected utility (MEU) principle:
• Choose the action that maximizes expected utility
• Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities
• E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle



Difficulties with utilities



Utility scales
Normalized utilities: u+ = 1.0, u- = 0.0

Micromorts: one-millionth chance of death, useful for paying to 
reduce product risks, etc.

QALYs: quality-adjusted life years, useful for medical decisions 
involving substantial risk

Note: behavior is invariant under positive linear transformation

With deterministic prizes only (no lottery choices), only ordinal 
utility can be determined, i.e., total order on prizes



Utilities map states to real numbers. Which numbers?
Standard approach to assessment (elicitation) of human utilities:

• Compare a prize A to a standard lottery Lp between
- “best possible prize” u+ with probability p
- “worst possible catastrophe” u- with probability 1-p

• Adjust lottery probability p until indifference: A ~ Lp
• Resulting p is a utility in [0,1]

Normalizing utilities

0.999999																														0.000001

No change

Pay $30

Instant death



Money
Money does not behave as a utility function, but we can talk about the 
utility of having money (or being in debt)
Given a lottery L = [p, $X; (1-p), $Y]

• The expected monetary value EMV(L) is p*X + (1-p)*Y
• U(L) = p*U($X) + (1-p)*U($Y)
• Typically, U(L) < U( EMV(L) )
• In this sense, people are risk-averse
• When deep in debt, people are risk-prone
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Example: Insurance
Consider the lottery [0.5, $1000;  0.5, $0]

• What is its expected monetary value?  ($500)
• What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- $400 for most people

• Difference of $100 is the insurance premium
- There’s an insurance industry because people will 

pay to reduce their risk
- If everyone were risk-neutral, no insurance 

needed!
• It’s win-win: you’d rather have the $400 and the 

insurance company would rather have the lottery (their 
utility curve is flat and they have many lotteries)



People are not rational
Famous example of Allais (1953)

• A: [0.8, $4k;    0.2, $0]
• B: [1.0, $3k;    0.0, $0]

• C: [0.2, $4k;    0.8, $0]
• D: [0.25, $3k;    0.75, $0]

Most people prefer B > A, C > D

But if U($0) = 0, then
• B > A Þ U($3k) > 0.8 U($4k)
• C > D Þ 0.8 U($4k) > U($3k)



Bias in utilities



That’s it for today!

• Next time: MDP’s!!!

• Note: Homework 2 is available now!


