
Search II

instructor: byron wallace
CS 4100 // artificial intelligence

Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials
Thanks to John DeNero and Dan Klein

Questions before we begin?

• On HW or anything else?

Today

Informed Search
• Heuristics
• Greedy Search
• A* Search

Graph Search

Last	time:	
(naive)	search

Search problem
• States (configurations of the world)
• Actions and costs
• Successor function (world dynamics)
• Start state and goal test

Recap

Search problem
• States (configurations of the world)
• Actions and costs
• Successor function (world dynamics)
• Start state and goal test

Search tree
• Nodes: represent plans for reaching states
• Plans have costs (sum of action costs)

Recap

Search problem
• States (configurations of the world)
• Actions and costs
• Successor function (world dynamics)
• Start state and goal test

Search tree
• Nodes: represent plans for reaching states
• Plans have costs (sum of action costs)

Search algorithm
• Systematically builds a search tree
• Chooses an ordering of the fringe (unexplored nodes)
• Optimal: finds least-cost plans

Recap

DFS, BFS, UCS

General tree search algorithm

The one queue
These search algorithms are the same except
for fringe strategies

• Conceptually, all fringes are priority queues (i.e.
collections of nodes with attached priorities)

• Practically, for DFS and BFS, you can avoid the
log(n) overhead from an actual priority queue, by
using stacks and queues

Uniform Cost Search
Strategy: expand lowest path cost

The good: UCS is complete and optimal!

The bad:
• Explores options in every “direction”
• No information about goal location Start Goal

…

c	£ 3

c	£ 2

c	£ 1

UCS

UCS: PacMan

Can we do better?

This is the motivation behind informed search, which uses
problem-specific knowledge to try and find solutions more
efficiently

Search heuristics
• Key addition for informed search
• A trick that tells us how far from our goal we are from a given state
• Specifically: a function mapping from states to reals that encode proximity to goal

A heuristic is
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• What might we use for PacMan (e.g., for pathing)?

Search heuristics

A heuristic is
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• What might we use for PacMan (e.g., for pathing)? Manhattan

distance, Euclidean distance

10

5

11.2

Search heuristics

Example: heuristic function

h(x)

Great, but… what do we do with these things?

Greedy search

Example: heuristic function

h(x)

Expand the node that seems closest…

What can go wrong?

Greedy search

Strategy: expand a node that you think is closest to a
goal state

- Heuristic: estimate of distance to nearest goal for each state

A common case:
- Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

…
b

…
b

Demo of Greedy

Demo of Greedy: PacMan

Greedy is only as good as your heuristic

A* search

Combining UCS and Greedy

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

• Uniform-cost orders by (cumulative) path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g =	0	
h=6

g =	1	
h=5

g =	2	
h=6

g =	3	
h=7

g =	4	
h=2

g =	6	
h=0

g =	9	
h=1

g =	10	
h=2

g =	12	
h=0

A*, in sum

Order node expansion in order of minimal f(n), where

f(n) = g(n) + h(n)

And g(n) is cost of path so far; h(n) is estimate (via heuristic function) of the remaining
cost to goal

S

B

A

G

2

3

2

2
h	=	1

h	=	2

h	=	0h	=	6

Let’s run A*.

A note on enqueuing and heuristics

A note on enqueuing and heuristics

S

B

A

G

2

3

2

2
h	=	1

h	=	2

h	=	0h	=	6

Let’s run A*.

So we found the goal but the path there was suboptimal! What happened?

Important! stop when you dequeue a goal state; not when you enqueue it!

Exercise (you may work in small groups; include all names legibly on hand-in)

S

B

A

G

1

1

3

2
h	=	1

h	=	4

h	=	0h	=	6

Starting from S, produce the set of nodes expanded to reach goal under:

1. DFS
2. UCS
3. A* -- for A*, include a table with g(n), h(n) and their sum, f(n)

Is A* optimal?

• Oops. What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than or equal to actual costs!

A

GS

1 3
h	=	6

h	=	0

5

h =	7

Admissible heuristics

Heuristic functions must be optimistic to be admissible.
Otherwise, a bad heuristic will prevent you from exploring possibly

good areas of the graph.

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality
by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans
but never outweigh true costs

Admissible heuristics, formally

A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal.

Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

Manhattan distance for PacMan pathing admissible?

15

Q: would Euclidean distance be admissible? Would it be better or worse here?

15

Manhattan distance for PacMan pathing admissible?

Questions on A* before we continue?

In which A earns its *.
(On the optimality of A*)

Optimality of A* Tree Search
Assume:
1. A is an optimal goal node
2. B is a suboptimal goal node
3. h is admissible

Claim: A will exit the fringe before B.

Note: this would imply general optimality.

…

Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

…

Optimality of A* Tree Search

Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)

…

Optimality of A* Tree Search

Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search

Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)

Optimality of A* Tree Search

B is suboptimal
h = 0 at a goal

…

Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

Optimality of A* Tree Search

…

Punchline: A* is optimal, due to admissibility of h

UCS v A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

• Uniform-cost expands equally in all “directions”

• A* expands mainly toward the goal, but does hedge
its bets to ensure optimality

Start Goal

Start Goal

Video of Demo Contours: UCS

Video of Demo Contours: Greedy

Video of Demo Contours: A*

Video of Demo Contours, PacMan: A*

Greedy Uniform Cost A*

Designing heuristics

Creating admissible heuristics

• Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

• Often, admissible heuristics are solutions to relaxed problems, where new actions
are available

• Inadmissible heuristics are often useful too

15
366

Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• How many successors from the start state?
• What should the costs be?

Start State Goal StateActions

8 Puzzle I
• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) =
• This is a relaxed-problem heuristic

8

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

• What if we had an easier 8-puzzle where any
tile could slide any direction at any time,
ignoring other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) = 3	+	1	+	2	+	…	=	18

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start	State Goal	State

8 Puzzle II

How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?

With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but

usually do more work per node to compute the heuristic itself

8 Puzzle II

Trivial heuristics, dominance
Dominance: ha ≥ hc if

Heuristics form a semi-lattice:
Max of admissible heuristics is admissible

Trivial heuristics
Bottom of lattice is the zero heuristic (what does this give us?)
Top of lattice is the exact heuristic

Trivial heuristics, dominance
Dominance: ha ≥ hc if

Heuristics form a semi-lattice:
Max of admissible heuristics is admissible

Trivial heuristics
Bottom of lattice is the zero heuristic
Top of lattice is the exact heuristic
Q: what happens if we use h(n) = 0 for all n?

Learning heuristics

• Rather than hand-crafting heuristics, what if we let the machine learn a heuristic
function?

• We’ll come back to this once we cover machine learning

Graph search: don’t retrace steps

Failure to detect repeated states can cause exponentially more work.

Search	TreeState	Graph

Tree search: extra work!

Graph search

In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Idea: never expand a state twice

How to implement:
• Tree search + set of expanded states (“closed set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been expanded

before
• If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?

Graph search

A* Graph search gone wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S	(0+2)

A	(1+4) B	(1+1)

C	(2+1)

G	(5+0)

C	(3+1)

G	(6+0)

State space graph Search tree

A* Graph search gone wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S	(0+2)

A	(1+4) B	(1+1)

C	(2+1)

G	(5+0)

C	(3+1)

G	(6+0)

State space graph Search tree

Closed set:
{SBC}

Whoops! What went wrong??

Consistency of heuristics

Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:

The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality of A* graph search
Sketch: consider what A* does with a consistent heuristic:

• Fact 1: In tree search, A* expands nodes in increasing total
f value (f-contours)

• Fact 2: For every state s, nodes that reach s optimally are
expanded before nodes that reach s suboptimally

• Result: A* graph search is optimal

…

f	£ 3

f	£ 2

f	£ 1

Optimality
Tree search:

• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h=0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

A* Summary

A* Summary
• A* uses both backward costs and (estimates of) forward costs

• A* is optimal with admissible / consistent heuristics

• Heuristic design is key: often use relaxed problems

Tree search pseudo-code

Graph search pseudo-code

That’s all for today.

Up next time: Beyond “classical” search – dealing with constraints
and stochastic environments

Be sure to make progress on the homeworks!

